版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省白城十四中高三第三次测评数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.2.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.603.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.254.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.5.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A. B. C.或 D.6.已知实数满足线性约束条件,则的取值范围为()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]7.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}8.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.9.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、10.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数11.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.12.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点()A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________.14.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.15.展开式中项系数为160,则的值为______.16.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.18.(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科C+等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属C+等级.而C+等级的转换分区间为61~70,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为x,69-6565-58=70-x四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布ξ∼N(60,12(i)若小明同学在这次考试中物理原始分为84分,等级为B+,其所在原始分分布区间为82~93,求小明转换后的物理成绩;(ii)求物理原始分在区间(72,84)的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记X表示这4人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.(附:若随机变量ξ∼N(μ,σ2),则Pμ-σ<ξ<μ+σ=0.68219.(12分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度20.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.21.(12分)已知点,且,满足条件的点的轨迹为曲线.(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
在中,设,,,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,,,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,,,,即,即,,,,,,,,即,又,,,则,所以,,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、、,为线段上的一点,则存在实数使得,,设,,则,,,,,消去得,,所以,,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.2、D【解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题3、D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.4、C【解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.5、D【解析】
根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.6、B【解析】
作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,,,过与直线平行的直线斜率为-1,∴.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论.7、C【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.8、D【解析】
首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.【点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.9、A【解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.10、C【解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.11、C【解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.12、A【解析】
由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,,又,,又,,,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
,,分类讨论即可.【详解】由已知,,,若,则或解得或,所以不等式的解集为.故答案为:【点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.14、【解析】
问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果.【详解】解:直线,点,,直线上存在点满足,的轨迹方程是.如图,直线与圆有公共点,圆心到直线的距离:,解得.实数的取值范围为.故答案为:.【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.15、-2【解析】
表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.16、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,,∵,∴,.(2),,,值域为.18、(1)(i)83.;(ii)272.(2)见解析.【解析】
(1)根据原始分数分布区间及转换分区间,结合所给示例,即可求得小明转换后的物理成绩;根据正态分布满足N60,122(2)根据各等级人数所占比例可知在区间61,80内的概率为25,由二项分布即可求得X【详解】(1)(i)设小明转换后的物理等级分为x,93-8484-82求得x≈82.64.小明转换后的物理成绩为83分;(ii)因为物理考试原始分基本服从正态分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在区间72,84的人数为2000×0.136=272(人);(2)由题意得,随机抽取1人,其等级成绩在区间61,80内的概率为25随机抽取4人,则X~B4,PX=0=3PX=2=CPX=4X的分布列为X01234P812162169616数学期望EX【点睛】本题考查了统计的综合应用,正态分布下求某区间概率的方法,分布列及数学期望的求法,文字多,数据多,需要细心的分析和理解,属于中档题。19、【解析】解:解:将曲线的极坐标方程化为直角坐标方程为,即,它表示以为圆心,2为半径圆,………4分直线方程的普通方程为,………8分圆C的圆心到直线l的距离,……………10分故直线被曲线截得的线段长度为.……………14分20、(1);(2)证明详见解析,;(3).【解析】
(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程,进而求得的方程,并代入,化简分析即可.(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.【详解】解:设椭圆的标准方程焦距为,由题意得,由,可得则,所以椭圆的标准方程为;证明:根据对称性,直线过的定点一定在轴上,由题意可知直线的斜率存在,设直线的方程为,联立,消去得到,设点,则.所以,所以的方程为,令得,将,代入上式并整理,,整理得,所以,直线与轴相交于定点.当过点的直线的斜率不存在时,直线的方程为,此时,当过点的直线斜率存在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版:特许连锁经营合同
- 2025年度虚拟现实娱乐项目合作协议范本3篇
- 2024年环保项目委托合同:废气处理设施建设与运营
- 2024版智能语音识别系统研发合同
- 2024年私借私还转账借款协议
- 2024年度债务转移及债务清偿监督合同范本3篇
- 2025年度智能建筑项目监理合同补充协议书3篇
- 2024年绿色制造生产车间承包与环保责任承诺书3篇
- 2024年环保设备采购与安装承包合同
- 2025年度橱柜安装与售后服务标准合同范本3篇
- 【A公司人力资源招聘管理问题及优化建议分析13000字(论文)】
- 钢结构牛腿计算
- 泌尿外科内镜诊疗技术质量保障措施及应急预案
- 华北电力大学(保定)
- Unity3D游戏开发PPT完整全套教学课件
- 肾内科学篇病例分析1
- unit5overcomingobstacles公开课一等奖市赛课一等奖课件
- 玻璃安装应急预案
- 五十音图+あ行+课件【高效备课精研+知识精讲提升】 初中日语人教版第一册
- 早爆、拒爆事故预防与处理
- 七年级美术上册-向日葵-湘教版优秀PPT
评论
0/150
提交评论