2023-2024学年北京海淀北京科技大学附属中学高考考前提分数学仿真卷含解析_第1页
2023-2024学年北京海淀北京科技大学附属中学高考考前提分数学仿真卷含解析_第2页
2023-2024学年北京海淀北京科技大学附属中学高考考前提分数学仿真卷含解析_第3页
2023-2024学年北京海淀北京科技大学附属中学高考考前提分数学仿真卷含解析_第4页
2023-2024学年北京海淀北京科技大学附属中学高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京海淀北京科技大学附属中学高考考前提分数学仿真卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.2.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.3.已知函数为奇函数,则()A. B.1 C.2 D.34.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.5.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D.6.执行如图所示的程序框图,则输出的值为()A. B. C. D.7.设等差数列的前项和为,若,,则()A.21 B.22 C.11 D.128.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个11.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.12.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.14.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.15.已知向量,,若向量与向量平行,则实数___________.16.已知向量,,且,则实数m的值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值18.(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.19.(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.20.(12分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.21.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.22.(10分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.2、D【解析】

由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.3、B【解析】

根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.4、A【解析】

根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.5、C【解析】

由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.6、B【解析】

列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.7、A【解析】

由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.8、A【解析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.9、A【解析】

根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.10、A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.11、A【解析】

设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.12、B【解析】

求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13、20【解析】

由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.【点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.14、【解析】

构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.15、【解析】

由题可得,因为向量与向量平行,所以,解得.16、1【解析】

根据即可得出,从而求出m的值.【详解】解:∵;∴;∴m=1.故答案为:1.【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由得,两式相减可得是从第二项开始的等比数列,由此即可求出答案;(2),分类讨论,当时,,作商法可得数列为递增数列,由此可得答案,【详解】解:(1)因为,,两式相减得:,即,是从第二项开始的等比数列,∵∴,则,;(2),当时,;当时,设递增,,所以实数的最小值.【点睛】本题主要考查地推数列的应用,属于中档题.18、(1);(2).【解析】

(1)在三角形中,利用余弦定理列方程,解方程求得的长,进而由三角形的面积公式求得三角形的面积.(2)利用诱导公式求得,进而求得,利用两角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的长.【详解】(1)在中,,解得,.(2)在中,,..【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.19、(1)(2)【解析】

(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,,由此可知,的解集为(2)当时,的最小值为和中的最小值,其中,.所以恒成立.当时,,且,不恒成立,不符合题意.当时,,若,则,故不恒成立,不符合题意;若,则,故不恒成立,不符合题意.综上,.【点睛】本小题主要考查绝对值不等式的解法,考查根据绝对值不等式恒成立求参数的取值范围,考查分类讨论的数学思想方法,属于中档题.20、(1);(2)【解析】

(1)由三角形面积公式,平面向量数量积的运算可得,结合范围,可求,进而可求的值.(2)利用同角三角函数基本关系式可求,利用两角和的正弦函数公式可求的值,由正弦定理可求得的值.【详解】解:(1)由,得,因为,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【点睛】本题主要考查了三角形面积公式,平面向量数量积的运算,同角三角函数基本关系式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.21、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;(Ⅱ)求得,然后利用裂项相消法可求得.【详解】(Ⅰ)设数列的公比为,由题意及,知.、、成等差数列成等差数列,,,即,解得或(舍去),.数列的通项公式为;(Ⅱ),.【点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.22、(1)证明见解析(2)存在,为中点【解析】

(1)证明面,即证明平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系.利用向量方法得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论