湖南省张家界市慈利县苗市中学高一数学文期末试卷含解析_第1页
湖南省张家界市慈利县苗市中学高一数学文期末试卷含解析_第2页
湖南省张家界市慈利县苗市中学高一数学文期末试卷含解析_第3页
湖南省张家界市慈利县苗市中学高一数学文期末试卷含解析_第4页
湖南省张家界市慈利县苗市中学高一数学文期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省张家界市慈利县苗市中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、,中年人、青年人分别各抽取的人数是(

)

A.6,12,18

B.7,11,19

C.6,13,17

D.7,12,17参考答案:A略2.下列函数中,最小正周期为的是(

)A.

B.

C.

D.参考答案:D3.下列说法中:①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一条直线的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的说法个数为【

】A.

B.

C.

D.参考答案:B4.(5分)设α,β,γ是三个互不重合的平面,l是直线,给出下列命题:①若α⊥β,β⊥γ,则α⊥γ;②若α∥β,l∥β,则l∥α;③若l⊥α,l∥β,则α⊥β;

④若α∥β,α⊥γ,则β⊥γ.其中正确的命题是() A. ①② B. ②③ C. ②④ D. ③④参考答案:D考点: 命题的真假判断与应用.专题: 空间位置关系与距离.分析: ①利用面面垂直的性质定理去证明.②利用线面平行和面面平行的性质定理去判断.③利用线面垂直和线面平行的性质去判断.④利用面面平行和面面垂直的性质取判断.解答: ①两平面都垂直于同一个平面,两平面可能平行可能相交,不一定垂直,故①错误.②当直线l?α时,满足条件,但结论不成立.当直线l?α时,满足条件,此时有l∥α,所以②错误.③平行于同一直线的两个平面平行,所以③正确.④一个平面垂直于两平行平面中的一个必垂直于另一个.所以④正确.所以正确的命题为③④.故选D.点评: 本题为命题真假的判断,正确认识空间里直线与平面的位置关系是解决问题的关键.5.函数f(x)=的定义域是(

)A.[﹣,1] B.(﹣,1) C.(,1) D.[﹣1,﹣]参考答案:B【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】求函数f(x)的定义域,即求使f(x)有意义的x的取值范围.【解答】解:欲使f(x)有意义,则有,解得﹣<x<1.∴f(x)的定义域是(﹣,1).故选B.【点评】本题属基础题,考查了函数的定义域及其求法,解析法给出的函数要使解析式有意义,具有实际背景的函数要考虑实际意义.6.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为1cm,2cm,3cm的长方体木块的顶点A处沿表面达到顶点B处(如图所示),这只蚂蚁走的路程是(

)A.

B.

C.

D.1+参考答案:B略7.若关于x的不等式对任意恒成立,则实数m的取值范围是A.或 B. C. D.参考答案:D解:因为关于的不等式对任意恒成立,故只需m小于,故选D8.如果点位于第三象限,那么在(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:B9.已知一个二次函数的顶点坐标为,且过点,则这个二次函数的解析式为(

A、

B、

C、

D、参考答案:D10.算法:此算法的功能是(

).A.输出a,b,c中的最大值 B.输出a,b,c中的最小值C.将a,b,c由小到大排序 D.将a,b,c由大到小排序参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.函数的零点,则=

.参考答案:112.已知函数,则函数f(x)的最小正周期为.参考答案:π【考点】二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法.【分析】把函数f(x)的解析式第二项利用二倍角的余弦函数公式化简,提取2后,利用特殊角的三角函数值及两角和与差的正弦函数公式化简,再利用诱导公式把函数解析式化为一个角的余弦函数,找出ω的值,代入周期公式T=,即可求出函数的最小正周期.【解答】解:=sin(2x﹣)﹣cos(2x﹣)+1=2sin(2x﹣﹣)=2sin(2x﹣)=﹣2cos2x,∵ω=2,∴T==π.故答案为:π13.总体有编号为01,02,…,19,20的20个个体组成。利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为

7816

6572

0802

6314

0702

4369

9728

01983204

9234

4935

8200

3623

4869

6938

7481

参考答案:0114.设f(x)为奇函数,且在(﹣∞,0)上递减,f(﹣2)=0,则xf(x)<0的解集为.参考答案:(﹣∞,﹣2)∪(2,+∞)【考点】3N:奇偶性与单调性的综合.【分析】易判断f(x)在(﹣∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.【解答】解:∵f(x)在R上是奇函数,且f(x)在(﹣∞,0)上递减,∴f(x)在(0,+∞)上递减,由f(﹣2)=0,得f(﹣2)=﹣f(2)=0,即f(2)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:由图象,得xf(x)<0?或,解得x<﹣2或x>2,∴xf(x)<0的解集为:(﹣∞,﹣2)∪(2,+∞)故答案为:(﹣∞,﹣2)∪(2,+∞)15.已知函数为奇函数,则

.参考答案:16.如图,已知某地一天从6时到14时的温度变化曲线近似满足函数,,则温度变化曲线的函数解析式为

.参考答案:略17.已知数列满足,则数列的通项公式是

参考答案:试题分析:先化简为:,利用累积法求数列的通项公式为。考点:数列递推式三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知α为锐角,且.(1)求的值;(2)求的值.参考答案:略19.定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.(3)若f(x)=4x﹣m?2x+1+m2﹣3为定义域R上的“局部奇函数”,求实数m的取值范围.参考答案:【考点】二次函数的性质.【分析】(1)利用局部奇函数的定义,建立方程f(﹣x)=﹣f(x),然后判断方程是否有解即可;(2)利用局部奇函数的定义,求出使方程f(﹣x)=﹣f(x)有解的实数m的取值范围,可得答案;(3)利用局部奇函数的定义,求出使方程f(﹣x)=﹣f(x)有解的实数m的取值范围,可得答案;【解答】解:f(x)为“局部奇函数”等价于关于x的方程f(﹣x)=﹣f(x)有解.(1)当f(x)=ax2+2x﹣4a(a∈R),时,方程f(﹣x)=﹣f(x)即2a(x2﹣4)=0,有解x=±2,所以f(x)为“局部奇函数”.

…(2)当f(x)=2x+m时,f(﹣x)=﹣f(x)可化为2x+2﹣x+2m=0,因为f(x)的定义域为[﹣1,1],所以方程2x+2﹣x+2m=0在[﹣1,1]上有解.…令t=2x∈[,2],则﹣2m=t+.设g(t)=t+,则g'(t)=,当t∈(0,1)时,g'(t)<0,故g(t)在(0,1)上为减函数,当t∈(1,+∞)时,g'(t)>0,故g(t)在(1,+∞)上为增函数.

…所以t∈[,2]时,g(t)∈[2,].所以﹣2m∈[2,],即m∈[﹣,﹣1].

…(3)当f(x)=4x﹣m2x+1+m2﹣3时,f(﹣x)=﹣f(x)可化为4x+4﹣x﹣2m(2x+2﹣x)+2m2﹣6=0.t=2x+2﹣x≥2,则4x+4﹣x=t2﹣2,从而t2﹣2mt+2m2﹣8=0在[2,+∞)有解即可保证f(x)为“局部奇函数”.…令F(t)=t2﹣2mt+2m2﹣8,1°当F(2)≤0,t2﹣2mt+2m2﹣8=0在[2,+∞)有解,由当F(2)≤0,即2m2﹣4m﹣4≤0,解得1﹣≤m≤1+;

…2°当F(2)>0时,t2﹣2mt+2m2﹣8=0在[2,+∞)有解等价于,解得1+≤m≤2.

…(说明:也可转化为大根大于等于2求解)综上,所求实数m的取值范围为1﹣≤m≤2.

…20.参考答案:解析:(1),且过,则当时,而函数的图象关于直线对称,则即,(2)当时,,

当时,

为所求。21.(10分)已知正方体ABCD﹣A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D1;(2)A1C⊥面AB1D1.参考答案:考点: 空间中直线与平面之间的位置关系.专题: 证明题.分析: (1)欲证C1O∥面AB1D1,根据直线与平面平行的判定定理可知只需证C1O与面AB1D1内一直线平行,连接A1C1,设A1C1∩B1D1=O1,连接AO1,易得C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1,满足定理所需条件;(2)欲证A1C⊥面AB1D1,根据直线与平面垂直的判定定理可知只需证A1C与面AB1D1内两相交直线垂直根据线面垂直的性质可知A1C⊥B1D1,同理可证A1C⊥AB1,又D1B1∩AB1=B1,满足定理所需条件.解答: 证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1,∵ABCD﹣A1B1C1D1是正方体,∴A1ACC1是平行四边形,∴A1C1∥AC且A1C1=AC,又O1,O分别是A1C1,AC的中点,∴O1C1∥AO且O1C1=AO,∴AOC1O1是平行四边形,∴C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1,∴C1O∥面AB1D1;(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!,又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论