版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市金江乡中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(
)A.2
B.
C.
D.参考答案:B略2.给出下列关于互不相同的直线和平面的四个命题:
(1)点,则与不共面;(2)、是异面直线,,且,则;(3)若,则;(4)若点A,,则,则,其中为错误的命题是(
)个
A.1个
B.2个
C.3个
D.4个参考答案:A3.设,则()A.b<a<c B.c<b<a C.c<a<b D.a<b<c参考答案:C【考点】对数值大小的比较.【专题】数形结合;转化思想;函数的性质及应用.【分析】利用指数函数、对数函数及其幂函数的单调性即可判断出正误.【解答】解:∵,log30.6<0<<,∴c<a<b.故选:C.【点评】本题考查了函数的单调性,考查了推理能力与计算能力,属于基础题.4.若向量与向量为共线向量,且,则向量的坐标为(
)A.(-6,3) B.(6,-3) C.(6,-3)或(-6,3) D.(-6,-3)或(6,3)参考答案:C【分析】设出向量的坐标为,根据两个向量共线,写出要求向量的坐标的表示形式,根据要求向量的模长是,利用向量的模长公式,写出关于的方程,解方程即可.【详解】根据题意,设向量的坐标为,由向量与向量为共线向量得,即,所以,因为,即有,解得,时,,时,所以向量的坐标为或。故本题正确答案为C。【点睛】本题考查两个向量的共线关系,考查向量的模长的运算,本题是一个基础题.5.已知函数为奇函数,且满足,,则的值为
(
)
A.0
B.2
C.
D.2009
参考答案:C
解析:由已知得,推出,所以,,又由上面关系式推得,选C6.对记,函数的最小值是(
)A.;B.;C.;D.参考答案:C7.已知全集,集合,集合则等于
(
)A.
B.
C.
D.参考答案:A8.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为2:3:5,现按型号用分层抽样的方法随机抽出容量为n的样本,若抽到24件乙型产品,则n等于()A.80 B.70 C.60 D.50参考答案:A【分析】求出抽样比,然后求解n的值即可.【解答】解:因为,所以n=80.故选A.9.已知函数
则等于(
)
A.
B.
C.
D.参考答案:D略10.已知,则的值为A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.当m∈N,若方程mx2+2(2m–1)x+4m–7=0至少有一个整数根,则m=
。参考答案:1或512.长方体ABCD﹣A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是.参考答案:【考点】点、线、面间的距离计算.【专题】计算题.【分析】根据题意,画出三种展开的图形,求出A、C1两点间的距离,比较大小,从而找出最小值即为所求.【解答】解:长方体ABCD﹣A1B1C1D1的表面可如下图三种方法展开后,A、C1两点间的距离分别为:=,=,=,三者比较得是从点A沿表面到C1的最短距离,∴最短距离是cm.故答案为:【点评】本题考查棱柱的结构特征,考查分类讨论思想,考查计算能力,属于基础题.13.一个几何体的三视图如右图所示,则该几何体的表面积为
.参考答案:24+1214.在△ABC中,若,则角的值是
.参考答案:60°或120°略15.函数的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=
.参考答案:【考点】对数函数的图像与性质;幂函数的性质.【专题】计算题.【分析】欲求函数的图象恒过什么定点,只要考虑对数函数f(x)=logax(a>0,a≠1)的图象恒过什么定点即可知,故只须令x=2即得,再设f(x)=xα,利用待定系数法求得α即可得f(9).【解答】解析:令,即;设f(x)=xα,则,;所以,故答案为:.【点评】本题主要考查了对数函数的图象与性质,以及幂函数的性质,属于容易题.主要方法是待定系数法.16.实数满足,则=_______.参考答案:
17.已知过点M(﹣3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为.参考答案:x=﹣3或5x﹣12y+15=0【考点】直线与圆的位置关系.【分析】设直线方程为y=k(x+3)或x=﹣3,根据直线l被圆圆x2+(y+2)2=25所截得的弦长为8,可得圆心到直线的距离为3,利用点到直线的距离公式确定k值,验证x=﹣3是否符合题意.【解答】解:设直线方程为y=k(x+3)或x=﹣3,∵圆心坐标为(0,﹣2),圆的半径为5,∴圆心到直线的距离d==3,∴=3,∴k=,∴直线方程为y=(x+3),即5x﹣12y+15=0;直线x=﹣3,圆心到直线的距离d=|﹣3|=3,符合题意,故答案为:x=﹣3或5x﹣12y+15=0.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知集合,,.(1)求,;(2)若,求a的取值范围.参考答案:
,
,
(2)由(1)知,①当时,满足,此时,得;
②当时,要,则,解得;略19.已知y=f(x)(x∈R)是偶函数,当x≥0时,f(x)=x2﹣2x.(1)求f(x)的解析式;(2)若不等式f(x)≥mx在1≤x≤2时都成立,求m的取值范围.参考答案:【考点】二次函数的性质.【分析】(1)当x<0时,有﹣x>0,由f(x)为偶函数,求得此时f(x)=f(﹣x)的解析式,从而得到函数f(x)在R上的解析式.(2)由题意得m≤x﹣2在1≤x≤2时都成立,而在1≤x≤2时,求得(x﹣2)min=﹣1,由此可得m的取值范围.【解答】解:(1)当x<0时,有﹣x>0,∵f(x)为偶函数,∴f(x)=f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,∴f(x)=.(2)由题意得x2﹣2x≥mx在1≤x≤2时都成立,即x﹣2≥m在1≤x≤2时都成立,即m≤x﹣2在1≤x≤2时都成立.而在1≤x≤2时,(x﹣2)min=﹣1,∴m≤﹣1.20.(本题满分10分)已知函数.(1)求不等式的解集;(2)设,其中,求在区间[l,3]上的最小值;(3)若对于任意的,关于的不等式在区间[1,3]上恒成立,求实数的取值范围.参考答案:(1)……3分(2)ks5u………………6分(3)不等式令,对称轴由已知,,所以所以只要当时,恒成立即可即当时,恒成立,所以实数的取值范围是.…………10分21.已知函数(1)判断函数的奇偶性,并说明理由。(2)若,求使>0成立的集合。参考答案:(1)定义域为(-2,2)
f(-x)=log-log是奇函数(2)f()=2
略22.(15分)已知y=f(t)=,t(x)=x2+2x+3.(1)求t(0)的值;(2)求f(t)的定义域;(3)试用x表示y.参考答案:考点: 函数的值;函数的定义域及其求法.专题: 函数的性质及应用.分析: (1)由t(x)=x2+2x+3,能求出t(0).(2)由y=f(t)=,t(x)=x2+2x+3,得x2+2x+3﹣2≥0,由此能求出f(t)的定义域为R.(3)由y=f(t)=,t(x)=x2+2x+3,解得x=y﹣1.(y≥0).解答: (1)∵t(x)=x2+2x+3,∴t(0)=02+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自我评价与发展计划
- 2021年山东省泰安市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年内蒙古自治区赤峰市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年山东省青岛市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年增味剂项目资金申请报告代可行性研究报告
- 2024年PCB高纯化学品项目资金筹措计划书代可行性研究报告
- 2025年无机矿物填充塑料项目规划申请报告模范
- 2025年盆景及园艺产品项目提案报告
- 2025年电池组配件项目申请报告范文
- 2025年监控摄像头项目申请报告模稿
- 公务车辆定点加油服务投标文件(技术方案)
- 《中国制造业的崛起》课件
- 中小学学校安全管理制度汇编
- DB21∕T 3240-2020 芹菜农药安全使用生产技术规程
- 2024年全国《考评员》专业技能鉴定考试题库与答案
- 广州沪教牛津版七年级英语上册期中试卷(含答案)
- 2025版国家开放大学法律事务专科《民法学(1)》期末考试总题库
- 幼儿心理健康的教育课件
- DB43T 1167-2016 高纯(SiO ≥99.997%)石英砂 规范
- 《环境保护产品技术要求 工业废气吸附净化装置》HJT 386-2007
- 化工过程安全管理导则学习考试题及答案
评论
0/150
提交评论