版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市赤兴中学高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知m,n为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是(
)A.②③ B.①③ C.②④ D.①④参考答案:B【分析】利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.2.函数的零点所在的区间是(
).
.
.
.参考答案:C3.下列对应不是映射的是 (
)参考答案:D选项A,B,C中的对应满足映射的条件,即集合M中的元素具有任意性、集合N中的元素具有唯一性。选项D中的元素1与集合N中的两个元素对应,不具有唯一性,故选项D中的对应不是映射。选D。
4.(5分)某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取多少() A. 8,5,17 B. 16,2,2 C. 16,3,1 D. 12,3,5参考答案:C考点: 分层抽样方法.专题: 计算题.分析: 根据所给的三个层次的人数,得到公司的总人数,利用要抽取的人数除以总人数,得到每个个体被抽到的概率,用概率乘以三个层次的人数,得到结果.解答: ∵公司现有职员160人,中级管理人员30人,高级管理人员10人∴公司共有160+30+10=200人,∵要从其中抽取20个人进行身体健康检查,∴每个个体被抽到的概率是,∴职员要抽取160×人,中级管理人员30×人,高级管理人员10×人,即抽取三个层次的人数分别是16,3,1故选C.点评: 本题考查分层抽样方法,解题的主要依据是每个个体被抽到的概率相等,主要是一些比较小的数字的运算,本题是一个基础题.5.函数的图像大致是参考答案:C略6.下列函数中,在区间上为增函数且以为周期的函数是A、
B、
C、
D、.参考答案:D略7.等于A.
B.
C.
D.参考答案:C8.函数f(x)=(a2+a﹣5)logax为对数函数,则f()等于()A.3 B.﹣3 C.﹣log36 D.﹣log38参考答案:B【考点】对数函数的定义.【分析】由对数函数定义推导出f(x)=log2x,由此能求出f().【解答】解:∵函数f(x)=(a2+a﹣5)logax为对数函数,∴,解得a=2,∴f(x)=log2x,∴f()==﹣3.故选:B.9.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围为(
)A、m<
B、m<0
C、m>
D、m≤参考答案:A10.(5分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是() A. 内切 B. 相交 C. 外切 D. 外离参考答案:B考点: 圆与圆的位置关系及其判定.专题: 计算题.分析: 由已知中两圆的方程:x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0,我们可以求出他们的圆心坐标及半径,进而求出圆心距|O1O2|,比较|O1O2|与R2﹣R1及R2+R1的大小,即可得到两个圆之间的位置关系.解答: 解:圆x2+y2﹣1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆;圆x2+y2﹣4x+2y﹣4=0表示以O2(2,﹣1)点为圆心,以R2=3为半径的圆;∵|O1O2|=∴R2﹣R1<|O1O2|<R2+R1,∴圆x2+y2﹣1=0和圆x2+y2﹣4x+2y﹣4=0相交故选B.点评: 本题考查的知识点是圆与圆的位置关系及其判定,若圆O1的半径为R1,圆O2的半径为R2,(R2≤R1),则当|O1O2|>R2+R1时,两圆外离,当|O1O2|=R2+R1时,两圆外切,当R2﹣R1<|O1O2|<R2+R1时,两相交,当|O1O2|=R2﹣R1时,两圆内切,当|O1O2|<R2﹣R1时,两圆内含.二、填空题:本大题共7小题,每小题4分,共28分11.点P为x轴上的一点,,则的最小值是_____.参考答案:略12.以,B(10,-1,6),C(2,4,3)为顶点的三角形的形状为
.参考答案:等腰直角三角形13.若函数f(x)的图象和g(x)=ln(2x)的图象关于直线x﹣y=0对称,则f(x)的解析式为.参考答案:ex【考点】函数解析式的求解及常用方法.【分析】利用互为反函数的性质即可得出.【解答】解:∵函数y=f(x)的图象与g(x)=ln(2x)的图象关于x﹣y=0对称,∴f(x)=ex,故答案为:ex14.函数的增区间是 .参考答案:易知定义域为,又函数在内单调递增,所以函数的增区间是。15.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.参考答案:②③④16.求值:________参考答案:【分析】设x,x∈,直接利用反三角函数求解.【详解】设x,x∈,所以.故答案为:【点睛】本题主要考查反三角函数求值,意在考查学生对该知识的理解掌握水平,属于基础题.17.已知定义在R上的函数f(x)满足:.请写出这样的函数的一个表达式:
______________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(1)求函数的最小值;(2)求实数的取值范围,使在区间上是单调函数.参考答案:②
………7分③………………8分…………9分综上所述:…………10分(2)易知,即在区间[-5,5]上是单调函数………………14分19.(12分)已知数列{an}各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2.(1)求{an}的通项公式;(2)设bn=,数列{bn}的前n项和为Tn,求Tn的最小值;参考答案:(1)因为(an+1)2=4Sn,所以Sn=,Sn+1=.所以Sn+1-Sn=an+1=即4an+1=an+12-an2+2an+1-2an,∴2(an+1+an)=(an+1+an)(an+1-an).因为an+1+an≠0,所以an+1-an=2,即{an}为公差等于2的等差数列.由(a1+1)2=4a1,解得a1=1,所以an=2n-1.(2)由(1)知bn==,∴Tn=b1+b2+…+bn=∵Tn+1-Tn=∴Tn+1>Tn.∴数列{Tn}为递增数列,∴Tn的最小值为T1=.20.如图,直三棱柱ABC-A1B1C1中,分别为的中点.(1)证明:C1D∥平面ABE;(2)求CC1与平面ABE所成角的正弦值.参考答案:(1)见解析;(2)【分析】(1)法一:要证平面,只需证明即可,通过构造平行四边形可证之;法二:可先证平面平面,利用面面平行的性质即可得到平面;(2)法一:由于即为与平面所成的角,利用数据求之;法二:(等积法)利用等积法计算出到平面的距离,从而要求的答案为:即可.【详解】(1)法一:取中点,连接,在直三棱柱中,.∵为中点,为中点,∴,∴四边形为平行四边形,∴.∵平面,平面,∴平面.法二:取中点,连结,在直三棱柱中,.∵为中点,为中点,∴,∴四边形为平行四边形,∴.又平面,平面,∴平面.∵分别为中点,∴.又平面,平面,∴平面.平面平面.平面平面.(2)法一:直三棱柱中,平面,∴.又∵,且,∴平面.过作于.∵平面,∴.又平面.又即为与平面所成的角..法二:(等积法)与平面所成的角相等.连结,直三棱柱中,平面,∴.又平面.,.设到平面的距离为,.∵,即.设与平面所成的角为,.【点睛】本题主要考查线面平行,线面角所成正弦值的相关计算,意在考查学生的空间想象能力,分析能力,转化能力,计算能力.21.已知函数,若(1)求a的值,并写出函数的最小正周期(不需证明);(2)是否存在正整数k,使得函数在区间内恰有2017个零点?若存在,求出k的值;若不存在,请说明理由.参考答案:解:(1),(2)存在,满足题意理由如下:当时,,设,则,,则,可得或,由图像可知,在上有个零点满足题意当时,,,则,,,,或,因为,所以在上不存在零点。综上讨论知:函数在上有个零点,而,因此函数在有2017个零点,所以存在正整数满足题意.
22.(本小题满分14分)已知点P(2,0),及圆C:x2+y2-6x+4y+4=0.
(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;
(2)设过点P的直线与圆C交于A、B两点,当|AB|=4,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工上班无证驾驶免责协议书(2篇)
- 二零二四年度战略合作协议:商务会议专用
- 二零二四年度在线教育平台建设与运营合同
- 二零二四年度蔬菜订购与价格锁定合同
- 组拼式大模板施工技术总结
- 冷水购销协议
- 演出节目道具制作合同
- 专项服务提供商协议
- 房屋买卖合同效力认定问题分析与启示
- 家庭护理厨师雇佣合同
- 浅议掘进工作面需风量计算和局部通风机选型
- 2022- 2023学年人教版九年级物理全册质量监测试卷(含答案)
- 能源经济学复习题
- 《神经病学》癫痫-课件
- 血吸虫病防治知识考试复习题库(含答案)
- 国家开放大学一网一平台电大《可编程控制器应用实训》形考任务1及3试题答案
- 2023学年六年级英语核心素养测试题
- 2023年山西省太原市辅警协警笔试笔试真题(含答案)
- 中医诊所管理规章制度
- JJF 1183-2007温度变送器校准规范
- 多维阅读第14级 Ollie and Ruby 奥利和鲁比
评论
0/150
提交评论