专题16 特殊角问题(原卷版)_第1页
专题16 特殊角问题(原卷版)_第2页
专题16 特殊角问题(原卷版)_第3页
专题16 特殊角问题(原卷版)_第4页
专题16 特殊角问题(原卷版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

特殊角问题一、知识导航一、什么是特殊角?说到特殊角我们很快就能想到比如30°、45°、60°、90°等,事实上,之所以以上角能称为特殊角,关键在于这些角的三角函数值特殊,比如同为整十,为什么我们会将60°称为特殊角,而50°便不是,原因很简单,,而我们并不知道50°的任一三角函数值.因此角度特殊不在于这个角是多少度,而在于其三角函数值是否有特殊值,所以除了常见的30°、45°、60°,我们可以扩充一下特殊角的范围.

以及从最后一张图中可得二倍角或者半角的三角函数构造:比如求tan15°:tan22.5°:一般半角三角函数值求法:一般二倍角函数值求法:

二、特殊角在坐标系中的意义当我们初次接触到平面直角坐标系时,我们就认识了一、三象限角平分线及二、四象限角平分线,即直线y=x和直线y=-x,在一次函数中我们知道,若两直线平行,则k相等.综合以上两点,可得:对于直线y=x+m或直线y=-x+m,与x轴夹角为45°.并且我们还可通过画图与计算得知:即“y=kx+b的k”与“直线和x轴的夹角”存在某种固定的联系.关系就是:(是直线与x轴的夹角).不装了,我摊牌了~

三、坐标系中特殊角的处理在坐标系中构造定角,从其三角函数值着手:思路1:构造三垂直相似(或全等);思路2:通过三角函数值化“角度条件”为“直线k”.二、典例精析引例1:如图,在平面直线坐标系中,直线AB解析式为,点M(2,1)是直线AB上一点,将直线AB绕点M顺时针旋转45°得到直线CD,求CD解析式.【分析】思路1:构造三垂直相似(全等)在坐标系中存在45°角,可作垂直即可得到等腰直角三角形,构造三垂直全等确定图形.在直线AB上取一点O,过点O作OP⊥AB交CD于P点,分别过M、P向x轴作垂线,垂足为E、F点.易证△OEM≌△PFO,故PF=OE=2,OF=ME=1,故P点坐标为(-1,2),结合P、M坐标可解直线CD解析式:.构造等腰直角的方式也不止这一种,也可过点O作CD的垂线,但直角顶点未知的情况计算略难于直角顶点已知的情况,故虽可以做但并不推荐.思路2:利用特殊角的三角函数值.过M点作MN∥x轴,则,,考虑到直线CD的增减性为y随着x的增大而减小,故,所以直线CD:,化简得:.

引例2:如图,在平面直线坐标系中,直线AB解析式为,点M(2,1)是直线AB上一点,将直线AB绕点M顺时针旋转得到直线CD,且,求直线CD解析式.【分析】在直线AB上再选取点O构造三垂直相似,如下图所示,易证△PFO∽△OEM,且相似比,即,,故P点坐标为,结合P、M点坐标可解直线CD解析式:.本题并不容易从三角函数值本身下手,原因在于角度并不属于我们所讨论的特殊角范围之内,简便的做法只存在于特殊的角中.认识特殊角,了解特殊角,运用特殊角,就能在复杂问题中找到简便的求法.三、中考真题演练1.(2023·四川攀枝花·中考真题)如图,抛物线经过坐标原点,且顶点为.

(1)求抛物线的表达式;(2)设抛物线与轴正半轴的交点为,点位于抛物线上且在轴下方,连接、,若,求点的坐标.2.(2023·湖北黄石·中考真题)如图,在平面直角坐标系中,抛物线与x轴交于两点,与y轴交于点.

(1)求此抛物线的解析式;(2)已知抛物线上有一点,其中,若,求的值;3.(2023·黑龙江大庆·中考真题)如图,二次函数的图象与轴交于A,两点,且自变量的部分取值与对应函数值如下表:

备用图(1)求二次函数的表达式;(2)若将线段向下平移,得到的线段与二次函数的图象交于,两点(在左边),为二次函数的图象上的一点,当点的横坐标为,点的横坐标为时,求的值;4.(2023·山东泰安·中考真题)如图1,二次函数的图象经过点.

(1)求二次函数的表达式;(3)小明认为,在第三象限抛物线上有一点D,使;请判断小明的说法是否正确,如果正确,请求出D的坐标;如果不正确,请说明理由.5.(2023·辽宁营口·中考真题)如图,抛物线与轴交于点和点,与轴交于点,抛物线的对称轴交轴于点,过点作直线轴,过点作,交直线于点.

(1)求抛物线的解析式;(2)如图,点为第三象限内抛物线上的点,连接和交于点,当时.求点的坐标;6.(2023·辽宁营口·中考真题)如图,抛物线与轴交于点和点,与轴交于点,抛物线的对称轴交轴于点,过点作直线轴,过点作,交直线于点.

(1)求抛物线的解析式;(3)在(2)的条件下,连接,在直线上是否存在点,使得?若存在,请直接写出点F的坐标;若不存在,请说明理由.7.(2023·内蒙古通辽·中考真题)在平面直角坐标系中,已知抛物线与x轴交于点和点B,与y轴交于点.

(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作轴,垂足为D,连接.①如图,若点P在第三象限,且,求点P的坐标;8.(2023·湖北·中考真题)如图1,在平面直角坐标系中,已知抛物线与轴交于点,与轴交于点,顶点为,连接.

(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接并延长交的延长线于点,求的度数;9.(2023·四川·中考真题)如图1,在平面直角坐标系中,已知二次函数的图象与x轴交于点,,与轴交于点.

(1)求抛物线的解析式;(2)已知为抛物线上一点,为抛物线对称轴上一点,以,,为顶点的三角形是等腰直角三角形,且,求出点的坐标;10.(2023·四川·中考真题)如图1,在平面直角坐标系中,已知二次函数的图象与x轴交于点,,与轴交于点.

(1)求抛物线的解析式;(3)如图,为第一象限内抛物线上一点,连接交轴于点,连接并延长交轴于点,在点运动过程中,是否为定值?若是,求出这个定值;若不是,请说明理由.11.(2023·湖南郴州·中考真题)已知抛物线与轴相交于点,,与轴相交于点.(1)求抛物线的表达式;(3)如图2,取线段的中点,在抛物线上是否存在点,使?若存在,求出点的坐标;若不存在,请说明理由.12.(2023·湖南·中考真题)如图,已知抛物线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论