版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省许昌市襄城县市级名校2023-2024学年中考数学仿真试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.0 D.12.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是()A.π B. C.π D.π3.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥4.下面调查方式中,合适的是()A.调查你所在班级同学的体重,采用抽样调查方式B.调查乌金塘水库的水质情况,采用抽样调査的方式C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式5.函数y=的自变量x的取值范围是()A.x≠2 B.x<2 C.x≥2 D.x>26.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点 B.重心 C.内心 D.外心7.下列实数中,最小的数是()A. B. C.0 D.8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60° B.75° C.85° D.90°9.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子()A.31 B.35 C.40 D.5010.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥4二、填空题(共7小题,每小题3分,满分21分)11.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.12.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_____cm.13.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.14.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.15.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.16.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.17.一元二次方程x﹣1=x2﹣1的根是_____.三、解答题(共7小题,满分69分)18.(10分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化简:(a﹣)÷.19.(5分)综合与实践:概念理解:将△ABC绕点A按逆时针方向旋转,旋转角记为θ(0°≤θ≤90°),并使各边长变为原来的n倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],:.问题解决:(2)如图,在△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B,C,C′在同一直线上,且四边形ABB′C′为矩形,求θ和n的值.拓广探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,对△ABC作变换得到△AB′C′,则四边形ABB′C′为正方形20.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?21.(10分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.22.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?23.(12分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,=,求向量关于、的分解式.24.(14分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据两个负数比较大小,绝对值大的负数反而小,可得答案.【详解】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、0>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.2、C【解析】
由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.3、A【解析】
侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.4、B【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、D【解析】
根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=有意义,∴x-20,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.6、D【解析】
为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.7、B【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】∵<-2<0<,∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.8、C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点:旋转的性质.9、C【解析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C.【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.二、填空题(共7小题,每小题3分,满分21分)11、50°【解析】【分析】直接利用圆周角定理进行求解即可.【详解】∵弧AB所对的圆心角是100°,∴弧AB所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12、1cm【解析】
首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在Rt△OAC中,根据勾股数得到AC=4,这样即可得到AB的长.【详解】解:如图,连接OA,则OA=5,OC=3,OC⊥AB,∴AC=BC,∴在Rt△OAC中,AC==4,∴AB=2AC=1.故答案为1.【点睛】本题考查垂径定理;勾股定理.13、1.【解析】
由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.14、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.15、4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.16、【解析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案为2.【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可17、x=0或x=1.【解析】
利用因式分解法求解可得.【详解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,则x=0或x=1,故答案为:x=0或x=1.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.三、解答题(共7小题,满分69分)18、(1);(2);【解析】
(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)原式(2)原式【点睛】本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.19、(1);(2);(3).【解析】
(1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;(2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;(3)根据四边形ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.【详解】解:(1)∵△AB′C′的边长变为了△ABC的n倍,∴△ABC∽△AB′C′,∴,故答案为:.(2)四边形是矩形,∴..在中,,...(3)若四边形ABB′C′为正方形,则,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案为:.【点睛】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.20、(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.21、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.【详解】解:(2)如图2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)结论ADBC=APBP仍成立;证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下图,过点D作DE⊥AB于点E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内部动迁分配协议模板
- 《品牌现状诊断报告》课件
- 2024版高速公路收费系统升级合同3篇
- 校方责任险赔偿协议书范本
- 《工程倫理概述》课件
- 股东补充协议范本版
- 河北农业大学现代科技学院《砌体结构》2023-2024学年第一学期期末试卷
- 煤炭购销合同范本简单
- 河北农业大学现代科技学院《会计学基础》2023-2024学年第一学期期末试卷
- 油库消防管理
- 新能源汽车的市场价格变化趋势
- 护理职业生涯规划书成长赛道
- 2024年重庆市优质企业梯度培育政策解读学习培训课件资料(专精特新 专精特新小巨人中小企业 注意事项)
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 三体二黑暗森林
- 2023年1月福建高中学业水平合格性考试语文试卷真题(含答案)
- 2024-2023-2024年中考语文三年真题分类汇编(全国版)7病句 试卷(含答案解析)
- 设备撞件不良分析报告
- 呼吸科进修总结汇报
- 小学语文新课程标准解读课件
- 作业治疗学:第八章矫形器
评论
0/150
提交评论