




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11一次函数性质综合1.(2023·四川乐山·统考中考真题)下列各点在函数图象上的是(
)A. B. C. D.【答案】D【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式,进行计算即可得到答案.【详解】解:一次函数图象上的点都在函数图象上,函数图象上的点都满足函数解析式,A.当时,,故本选项错误,不符合题意;B.当时,,故本选项错误,不符合题意;C.当时,,故本选项错误,不符合题意;D.当时,,故本选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.2.(2022·四川眉山)一次函数的值随的增大而增大,则点所在象限为(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【分析】根据一次函数的性质求出m的范围,再根据每个象限点的坐标特征判断P点所处的象限即可.【详解】∵一次函数的值随的增大而增大,∴解得:∴在第二象限故选:B【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.3.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数的图象向右平移3个单位长度得到一次函数的图象,则该一次函数的解析式为(
)A. B. C. D.【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数的图象向右平移3个单位长度得:,故选:B.【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.4.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【详解】∵a2⩾0,∴a2+1⩾1,∴点P(−3,a2+1)所在的象限是第二象限.故选B.5.(2022·湖南株洲)在平面直角坐标系中,一次函数的图象与轴的交点的坐标为(
)A. B. C. D.【答案】D【分析】令x=0,求出函数值,即可求解.【详解】解:令x=0,,∴一次函数的图象与轴的交点的坐标为.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.6.(2022·湖南娄底)将直线向上平移2个单位,相当于(
)A.向左平移2个单位B.向左平移1个单位C.向右平移2个单位D.向右平移1个单位【答案】B【分析】函数图象的平移规律:左加右减,上加下减,根据规律逐一分析即可得到答案.【详解】解:将直线向上平移2个单位,可得函数解析式为:直线向左平移2个单位,可得故A不符合题意;直线向左平移1个单位,可得故B符合题意;直线向右平移2个单位,可得故C不符合题意;直线向右平移1个单位,可得故D不符合题意;故选B【点睛】本题考查的是一次函数图象的平移,掌握一次函数图象的平移规律是解本题的关键.7.(2023·新疆·统考中考真题)一次函数的图象不经过(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【分析】根据即可求解.【详解】解:∵一次函数中,∴一次函数的图象不经过第四象限,故选:D.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.(2023·甘肃武威·统考中考真题)若直线(是常数,)经过第一、第三象限,则的值可为(
)A. B. C. D.2【答案】D【分析】通过经过的象限判断比例系数k的取值范围,进而得出答案.【详解】∵直线(是常数,)经过第一、第三象限,∴,∴的值可为2,故选:D.【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.9.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在,,,四个点中,直线PB经过的点是(
)A. B. C. D.【答案】B【分析】根据含30°角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∴PA⊥y轴,PA=4,由旋转得:∠APB=60°,AP=PB=4,如图,过点B作BC⊥y轴于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),设直线PB的解析式为:y=kx+b,则,∴,∴直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,∴点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,∴M2(-,-1)在直线PB上,当x=1时,y=+2,∴M3(1,4)不在直线PB上,当x=2时,y=2+2,∴M4(2,)不在直线PB上.故选:B.【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.10.(2023·山东临沂·统考中考真题)对于某个一次函数,根据两位同学的对话得出的结论,错误的是(
)A. B. C. D.【答案】C【分析】首先根据一次函数的性质确定k,b的符号,再确定一次函数系数的符号,判断出函数图象所经过的象限.【详解】解:∵一次函数的图象不经过第二象限,∴,故选项A正确,不符合题意;∴,故选项B正确,不符合题意;∵一次函数的图象经过点,∴,则,∴,故选项C错误,符合题意;∵,∴,故选项D正确,不符合题意;故选:C.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.11.(2022·湖南邵阳)在直角坐标系中,已知点,点是直线上的两点,则,的大小关系是(
)A. B. C. D.【答案】A【分析】因为直线,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线,∴y随着x的增大而减小,∵32>,∴∴m<n,故选:A.【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.12.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数的图象是(
)A.
B.
C.
D.
【答案】D【分析】依据一次函数的图象经过点和,即可得到一次函数的图象经过一、三、四象限.【详解】解:一次函数中,令,则;令,则,∴一次函数的图象经过点和,∴一次函数的图象经过一、三、四象限,故选:D.【点睛】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.13.(2022·浙江绍兴)已知为直线上的三个点,且,则以下判断正确的是(
).A.若,则 B.若,则C.若,则 D.若,则【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y随x增大而减小,当y=0时,x=1.5∵(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x1<x2<x3∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.14.(2022·浙江嘉兴)已知点,在直线(k为常数,)上,若的最大值为9,则c的值为(
)A. B.2 C. D.1【答案】B【分析】把代入后表示出,再根据最大值求出k,最后把代入即可.【详解】把代入得:∴∵的最大值为9∴,且当时,有最大值,此时解得∴直线解析式为把代入得故选:B.【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据的最大值为9求出k的值.15.(2021·江苏苏州市·中考真题)已知点,在一次函数的图像上,则与的大小关系是()A. B. C. D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∴y随x的增大而增大.∵2<,∴.∴m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.16.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线不经过第一象限,则关于的方程的实数根的个数为()A.0个 B.1个 C.2个 D.1或2个【答案】D【分析】直线不经过第一象限,则m=0或m<0,分这两种情形判断方程的根.【详解】∵直线不经过第一象限,∴m=0或m<0,当m=0时,方程变形为x+1=0,是一元一次方程,故有一个实数根;当m<0时,方程是一元二次方程,且△=,∵m<0,∴-4m>0,∴1-4m>1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D.【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.17.(2020•凉山州)若一次函数y=(2m+1)x+m﹣3的图象不经过第二象限,则m的取值范围是()A.m>-12 B.m<3 C.-12【分析】根据题意得到关于m的不等式组,然后解不等式组即可.【解析】根据题意得2m+1>解得-1故选:D.18.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=2A.y=x+2 B.y=2x+2 C.y=4x+2 D.y=【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解析】∵直线y=2x+2和直线y=2∴A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=2x+2与x轴的交点为(-2,0);故直线yC、y=4x+2与x轴的交点为(-1D、y=233x+2与x轴的交点为(-故选:C.19.(2020·湖南湘西?中考真题)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是()A.正比例函数的解析式是B.两个函数图象的另一交点坐标为C.正比例函数与反比例函数都随x的增大而增大D.当或时,【答案】D【解析】【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式和,可判断A错误;两个函数的两个交点关于原点对称,可判断B错误,再根据正比例函数与反比例函数图像的性质,可判断C错误,D正确,即可选出答案.【详解】解:根据正比例函数的图象与反比例函数的图象相交于点,即可设,,将分别代入,求得,,即正比例函数,反比例函数,故A错误;另一个交点与关于原点对称,即,故B错误;正比例函数随x的增大而减小,而反比例函数在第二、四象限的每一个象限内y均随x的增大而增大,故C错误;根据图像性质,当或时,反比例函数均在正比例函数的下方,故D正确.故选D.【点睛】本题目考查正比例函数与反比例函数,是中考的重要考点,熟练掌握两种函数的性质是顺利解题的关键.20.(2020·江苏泰州?中考真题)点在函数的图像上,则代数式的值等于()A. B. C. D.【答案】C【解析】【分析】把代入函数解析式得,化简得,化简所求代数式即可得到结果;【详解】把代入函数解析式得:,化简得到:,∴.故选:C.【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.21.(2023·湖北荆州·统考中考真题)如图,直线分别与轴,轴交于点,,将绕着点顺时针旋转得到,则点的对应点的坐标是()
A. B. C. D.【答案】C【分析】先根据一次函数解析式求得点的坐标,进而根据旋转的性质可得,,,进而得出,结合坐标系,即可求解.【详解】解:∵直线分别与轴,轴交于点,,∴当时,,即,则,当时,,即,则,∵将绕着点顺时针旋转得到,又∵∴,,,∴,延长交轴于点,则,,∴,
故选:C.【点睛】本题考查了一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.22.(2020·四川凉山?中考真题)已知一次函数y=(2m+1)x+m-3的图像不经过第二象限,则m的取值范围()A.m>- B.m<3 C.-<m<3 D.-<m≤3【答案】D【解析】【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,,解得:-<m<3.当函数图象经过第一,三象限时,,解得m=3.∴-<m≤3.故选D.【点睛】一次函数的图象所在的象限由k,b的符号确定:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限.注意当b=0的特殊情况.23.(2020·广东广州?中考真题)一次函数的图象过点,,,则()A. B. C. D.【答案】B【解析】【分析】根据一次函数的图象分析增减性即可.【详解】因为一次函数的一次项系数小于0,所以y随x增减而减小.故选B.【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.24.(2020·广东广州?中考真题)直线不经过第二象限,则关于的方程实数解的个数是().A.0个 B.1个 C.2个 D.1个或2个【答案】D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】∵直线不经过第二象限,∴,∵方程,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.25.(2020·湖南益阳?中考真题)一次函数的图象如图所示,则下列结论正确的是()A. B.C.随的增大而减小 D.当时,【答案】B【解析】【分析】根据一次函数的图象与性质判断即可.【详解】由图象知,k﹥0,且y随x的增大而增大,故A、C选项错误;图象与y轴负半轴的交点坐标为(0,-1),所以b=﹣1,B选项正确;当x﹥2时,图象位于x轴的上方,则有y﹥0即﹥0,D选项错误,故选:B.【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.26.(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,已知点,点,以点P为中心,把点A按逆时针方向旋转得到点B,在,,,四个点中,直线经过的点是(
)
A. B. C. D.【答案】B【分析】根据含角的直角三角形的性质可得,利用待定系数法可得直线的解析式,依次将四个点的一个坐标代入中可解答.【详解】解:∵点,点,
∴轴,,由旋转得:,如图,过点B作轴于C,∴,∴,∴),设直线的解析式为:,则,∴,∴直线的解析式为:,当时,,∴点不在直线上,当时,,∴在直线上,当时,∴不在直线上,当时,,∴不在直线上.故选:B.【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.27.(2023·江苏苏州·统考中考真题)已知一次函数的图象经过点和,则________________.【答案】【分析】把点和代入,可得,再整体代入求值即可.【详解】解:∵一次函数的图象经过点和,∴,即,∴;故答案为:【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.28.(2023·天津·统考中考真题)若直线向上平移3个单位长度后经过点,则的值为________.【答案】5【分析】根据平移的规律求出平移后的解析式,再将点代入即可求得的值.【详解】解:直线向上平移3个单位长度,平移后的直线解析式为:.平移后经过,.故答案为:5.【点睛】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.29.(2023·广西·统考中考真题)函数的图象经过点,则______.【答案】1【分析】把点代入函数解析式进行求解即可.【详解】解:由题意可把点代入函数解析式得:,解得:;故答案为:1.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.30.(2022·江苏扬州)如图,函数的图像经过点,则关于的不等式的解集为________.【答案】【分析】观察一次函数图象,可知当y>3时,x的取值范围是,则的解集亦同.【详解】由一次函数图象得,当y>3时,,则y=kx+b>3的解集是.【点睛】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.31.(2022·四川德阳)如图,已知点,,直线经过点.试探究:直线与线段有交点时的变化情况,猜想的取值范围是______.【答案】或##或【分析】根据题意,画出图象,可得当x=2时,y≥1,当x=-2时,y≥3,即可求解.【详解】解:如图,观察图象得:当x=2时,y≥1,即,解得:,当x=-2时,y≥3,即,解得:,∴的取值范围是或.故答案为:或【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.32.(2020·山东临沂?中考真题)点和点在直线上,则m与n的大小关系是_________.【答案】m<n【解析】【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线中,k=2>0,∴此函数y随着x的增大而增大,
∵<2,
∴m<n.
故答案为:m<n.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.33.(2021·四川眉山市·中考真题)一次函数的值随值的增大而减少,则常数的取值范围是______.【答案】【分析】由题意,先根据一次函数的性质得出关于的不等式,再解不等式即可.【详解】解:一次函数的值随值的增大而减少,,解得:,故答案是:.【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.34.(2021·江苏苏州市·中考真题)若,且,则的取值范围为______.【答案】【分析】根据可得y=﹣2x+1,k=﹣2<0进而得出,当y=0时,x取得最大值,当y=1时,x取得最小值,将y=0和y=1代入解析式,可得答案.【详解】解:根据可得y=﹣2x+1,∴k=﹣2<0∵,∴当y=0时,x取得最大值,且最大值为,当y=1时,x取得最小值,且最小值为0,∴故答案为:.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.35.(2021·四川成都市·中考真题)在正比例函数中,y的值随着x值的增大而增大,则点在第______象限.【答案】一【分析】先根据正比例函数中,函数y的值随x值的增大而增大判断出k的符号,求出k的取值范围即可判断出P点所在象限.【详解】解:∵正比例函数中,函数y的值随x值的增大而增大,∴k>0,∴点在第一象限.故答案为:一.【点睛】本题考查的是一次函数图象与系数的关系,正比例函数的性质,根据题意判断出k的符号是解答此题的关键.36.(2021·四川自贡市·中考真题)当自变量时,函数(k为常数)的最小值为,则满足条件的k的值为_________.【答案】【分析】分时,时,时三种情况讨论,即可求解.【详解】解:①若时,则当时,有,故,故当时,有最小值,此时函数,由题意,,解得:,满足,符合题意;②若,则当时,,故当时,有最小值,此时函数,由题意,,解得:,不满足,不符合题意;③若时,则当时,有,故,故当时,有最小值,此时函数,由题意,,方程无解,此情况不存在,综上,满足条件的k的值为.故答案为:.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.37.(2020·宁夏中考真题)如图,直线与x轴、y轴分别交于A、B两点,把绕点B逆时针旋转90°后得到,则点的坐标是_____.【答案】(4,)【解析】【分析】首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB-OA,即可得出答案.【详解】解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB-OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.38.(2020·贵州中考真题)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为_____.【答案】x<4【解析】【分析】结合函数图象,写出直线在直线y=2下方所对应的自变量的范围即可.【详解】解:∵直线y=kx+b与直线y=2交于点A(4,2),∴x<4时,y<2,∴关于x的不等式kx+b<2的解集为:x<4.故答案为:x<4.【点睛】本题考查的是利用函数图像解不等式,理解函数图像上的点的纵坐标的大小对图像的影响是解题的关键39.(2020·山东初三学业考试)如图所示,一次函数(、为常数,且)的图象经过点,则不等式的解集为___.【答案】.【解析】【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【详解】函数的图象如图所示,图象经过点,且函数值随的增大而增大,故不等式的解集是.故答案为:.【点睛】本题考查了一次函数与不等式的关系及数形结合思想的应用.解题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.40.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系中,点B的坐标为,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线与交于点D.与y轴交于点E.动点M在线段上,动点N在直线上,若是以点N为直角顶点的等腰直角三角形,则点M的坐标为
【答案】或【分析】如图,由是以点N为直角顶点的等腰直角三角形,可得在以为直径的圆上,,可得是圆与直线的交点,当重合时,符合题意,可得,当N在的上方时,如图,过作轴于,延长交于,则,,证明,设,可得,,而,则,再解方程可得答案.【详解】解:如图,∵是以点N为直角顶点的等腰直角三角形,∴在以为直径的圆上,,∴是圆与直线的交点,
当重合时,∵,则,∴,符合题意,∴,当N在的上方时,如图,过作轴于,延长交于,则,,∴,
∵,,∴,∴,∴,设,∴,,而,∴,解得:,则,∴,∴;综上:或.故答案为:或.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.41.(2023·四川自贡·统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接.当取最小值时,的最小值是.
【答案】【分析】作出点,作于点D,交x轴于点F,此时的最小值为的长,利用解直角三角形求得,利用待定系数法求得直线的解析式,联立即可求得点D的坐标,过点D作轴于点G,此时的最小值是的长,据此求解即可.【详解】解:∵直线与x轴,y轴分别交于A,B两点,∴,,作点B关于x轴的对称点,把点向右平移3个单位得到,作于点D,交x轴于点F,过点作交x轴于点E,则四边形是平行四边形,此时,,∴有最小值,作轴于点P,
则,,∵,∴,∴,∴,即,∴,则,设直线的解析式为,则,解得,∴直线的解析式为,联立,,解得,即;过点D作轴于点G,
直线与x轴的交点为,则,∴,∴,∴,即的最小值是,故答案为:.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.42.(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点在直线上,过点A的直线交y轴于点.
(1)求m的值和直线的函数表达式.(2)若点在线段上,点在直线上,求的最大值.【答案】(1),;(2)【分析】(1)把点A的坐标代入直线解析式可求解m,然后设直线的函数解析式为,进而根据待定系数法可进行求解函数解析式;(2)由(1)及题意易得,,则有,然后根据一次函数的性质可进行求解.【详解】(1)解:把点代入,得.设直线的函数表达式为,把点,代入得,解得,∴直线的函数表达式为.(2)解:∵点在线段上,点在直线上,∴,,∴.∵,∴的值随的增大而减小,∴当时,的最大值为.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.43.(2019•乐山)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.【解析】(1)∵点P(-1,a)在直线l2:y=2x+4上,∴2×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.44.(2020·山东滨州?中考真题)如图,在平面直角坐标系中,直线与直线相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求PAB的面积;(3)请把图象中直线在直线上方的部分描黑加粗,并写出此时自变量x的取值范围.【答案】(1);(2)3;(3)【解析】【分析】(1)解析式联立,解方程组即可求得交点P的坐标;
(2)求得A、B的坐标,然后根据三角形面积公式求得即可;
(3)根据图象求得即可.【详解】解:根据题意,交点的横、纵坐标是方程组的解解这个方程组,得交点的坐标为直线与轴的交点的坐标为直线与轴交点的坐标为的面积为在图象中把直线在直线上方的部分描黑加粗,图示如下:此时自变量的取值范围为
【点睛】
本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.45.(2020·江苏南通?中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.【答案】(1)y=﹣2x+6;(2)M(3,6)或(﹣1,2).【解析】【分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.【详解】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).【点睛】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.46.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.
(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政组织与社会动态变化的适应性试题及答案
- 网络架构设计原则试题及答案
- 数据库中间件应用实例试题及答案
- 测试需求管理与跟踪试题及答案
- 公路工程施工组织设计试题及答案解析
- 计算机四级软件测试全景总结试题及答案
- 培训学校实训管理制度
- 小学学生考勤管理制度
- 深入探索2025年网络技术考试试题及答案
- 嵌入式无线通信技术试题及答案
- 专题02地球的运动-三年(2020-2022)中考地理真题分项汇编(辽宁专用)(原卷版+解析)
- 定向增发一般流程
- 王维诗词课件
- 机械制造业质量管控流程指南
- 反诉状(业主反诉物业)(供参考)
- 河道景观设计合同范本
- 海外仓合同范本
- 2024妇科恶性肿瘤抗体偶联药物临床应用指南(完整版)
- 2024-2029全球及中国电气电子中的CFD行业市场发展分析及前景趋势与投资发展研究报告
- 中国法律史-第三次平时作业-国开-参考资料
- 悬挑脚手架及卸料平台监理旁站记录表
评论
0/150
提交评论