版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市越秀区2024届中考二模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟 B.20分钟 C.13分钟 D.7分钟2.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣) B.(﹣) C.(﹣) D.(﹣)3.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|4.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A.ab=23 B.a5.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A. B. C. D.6.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)7.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数8.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.519.的倒数的绝对值是()A. B. C. D.10.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.25二、填空题(本大题共6个小题,每小题3分,共18分)11.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.12.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:的内切圆.小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D;
点O为圆心,OD长为半径作所以,即为所求作的圆.请回答:该尺规作图的依据是______.13.已知点M(1,2)在反比例函数y=k14.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x…-5-4-3-2-1…y…3-2-5-6-5…则关于x的一元二次方程ax2+bx+c=-2的根是______.15.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.16.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.三、解答题(共8题,共72分)17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(8分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.19.(8分)解分式方程:.20.(8分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)21.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?22.(10分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.23.(12分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=-2,…按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.24.某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元).(1)若只在国内销售,当x=1000(件)时,y=(元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:,将(7,100)代入,得k=700,∴,将y=35代入,解得;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.2、A【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故选A.【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3、D【解析】
根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.∴选D.4、B【解析】∵2a=3b,∴ab=3故选B.5、D【解析】
根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D.【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.6、D【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).7、C【解析】
利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.8、D【解析】试题解析:第①个图形中有盆鲜花,第②个图形中有盆鲜花,第③个图形中有盆鲜花,…第n个图形中的鲜花盆数为则第⑥个图形中的鲜花盆数为故选C.9、D【解析】
直接利用倒数的定义结合绝对值的性质分析得出答案.【详解】解:−的倒数为−,则−的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.10、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.【详解】设这两天此股票股价的平均增长率为x,由题意得(1﹣10%)(1+x)2=1.故答案为:(1﹣10%)(1+x)2=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为12、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】
根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.13、-2【解析】k==1×(-2)=-214、x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.15、.【解析】
先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=,∴点A在圆外,点B在圆内,r的范围是,故答案为.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.16、1【解析】
过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.三、解答题(共8题,共72分)17、12【解析】
设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.18、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)【解析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,,则;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵点P在运动中保持∠APD=90°,∴点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,∵在Rt△QDC中,∴,即线段CP的最大值是.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.19、.【解析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.考点:解分式方程.20、(1)见解析;(2)MF=NF.【解析】
(1)连接AE,BD,先证明△ACE和△BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可.(2)根据图(2)(3)进行合理猜想即可.【详解】解:(1)连接AE,BD在△ACE和△BCD中∴△ACE≌△BCD∴AE=BD又∵点M,N,F分别为AB,ED,AD的中点∴MF=BD,NF=AE∴MF=NF(2)MF=NF.方法同上.【点睛】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.21、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,1580答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.22、一次函数解析式为;反比例函数解析式为;.【解析】
(1)根据A(-1,0)代入y=kx+2,即可得到k的值;(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;(3)先根据D(a,0),PD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年体育场馆建设及运营合同
- 机械工程有哪些课程设计
- 机械学综合课程设计
- 机械原理a课程设计
- 八年级语文下册 第四单元 天人对话 比较 探究《望岳》教案2 北师大版
- 城市更新多样化路径实施模式的解析与研究
- 福建省南安市体育学校九年级化学下册 第九单元 课题3 溶质的质量分数教案2 新人教版
- 2024秋一年级语文上册 汉语拼音 11 ie üe er说课稿 新人教版
- 机构的创新设计课程设计
- 机房管理系统Java课程设计
- 煤矿建设工程施工技术资料
- 面试信息登记表
- 一级直线倒立摆系统模糊控制器设计---实验指导书
- 梁纵筋水平最小锚固长度不足与固接条件的处理的设计优化
- 大坝基础面处理施工方案
- 动画运动规律自然现象
- 腹膜后间隙解剖及CT诊断
- 液压设计常用资料密封沟槽尺寸
- 自动化控制仪表安装工程采用材料及机械价格表(2014版江苏省)
- 八卦象数疗法
- 鲁人版九年级道德与法治上册 2.3一年一度的人民代表大会
评论
0/150
提交评论