版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市模范中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣) B.y=sin(3x+) C.y=sin(3x﹣) D.y=sin(3x+)参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可求解.【解答】解:把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式为y=sin[3(x﹣)]=sin(3x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.2.对于定义在R上的任意偶函数f(x)都有(
)A. B.C. D.参考答案:D3.已知中,,则(
)A.
B.或
C.
D.或参考答案:D4.已知△ABC,若对?t∈R,||,则△ABC的形状为()A.必为锐角三角形 B.必为直角三角形C.必为钝角三角形 D.答案不确定参考答案:C【考点】平面向量数量积的运算.【分析】可延长BC到D,使BD=2BC,并连接DA,从而可以得到,在直线BC上任取一点E,满足,并连接EA,从而可以得到,这样便可得到,从而有AD⊥BD,这便得到∠ACB为钝角,从而△ABC为钝角三角形.【解答】解:如图,延长BC到D,使BD=2BC,连接DA,则:,;设,则E在直线BC上,连接EA,则:;∵;∴;∴AD⊥BD;∴∠ACD为锐角;∴∠ACB为钝角;∴△ABC为钝角三角形.故选:C.5.已知等比数列的前项和为,若成等差数列,则(
)A.
B.
C.
D.参考答案:C6.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是(
)A.a<c<b B.a<b<c C.b<a<c D.b<c<a参考答案:C【考点】指数函数单调性的应用.【专题】计算题.【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C【点评】本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.7.等比数列的前项和为,已知,,则=(
)A.
B.
C.
D.参考答案:C8.2011年3月11日,日本发生了9级大地震并引发了核泄漏。某商场有四类食品,粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是
(
)A.
B.
C.
D.7参考答案:C略9.若正切函数且在上为单调递增函数,那么的最大值是(
)A.2
B.1 C.
D.参考答案:10.对任意的实数k,直线y=kx+1与圆的位置关系一定是(
)A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若函数y=f(x)在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f(-2)=0,则不等式x·f(x)<0的解集为________.参考答案:(-2,0)∪(0,2)略12.直线xsinα﹣y+1=0的倾角的取值范围. 参考答案:[0,]∪[)【考点】直线的倾斜角. 【分析】由直线方程求出直线斜率的范围,再由正切函数的单调性求得倾角的取值范围. 【解答】解:直线xsinα﹣y+1=0的斜率为k=sinα, 则﹣1≤k≤1, 设直线xsinα﹣y+1=0的倾斜角为θ(0≤θ<π), 则﹣1≤tanθ≤1, ∴θ∈[0,]∪[). 故答案为:[0,]∪[). 【点评】本题考查直线的倾斜角,考查了直线倾斜角和斜率的关系,训练了由直线斜率的范围求倾斜角的范围,是基础题. 13.函数的最小正周期是______________
参考答案:略14.设M为不等式组所表示的平面区域,N为不等式组所表示的平面区域,其中。在M内随机取一点A,记点A在N内的概率为P。(ⅰ)若,则P=______________;(ⅱ)P的最大值是______________。参考答案:,15.=.参考答案:﹣3【考点】有理数指数幂的化简求值.【分析】利用指数与对数的运算法则即可得出.【解答】解:原式=﹣4÷1﹣=4﹣4﹣3=﹣3.故答案为:﹣3.16.若球的半径为,则这个球的内接正方体的表面积是
;参考答案:7217.设数列{an}的前n项和为Sn,若,n∈N*,则______.参考答案:121分析:由an+1=2Sn+1先明确数列{Sn+}成等比数列,从而求得S5详解:S2=4,an+1=2Sn+1,n∈,∴Sn+1?Sn=1+2Sn,变形为:Sn+1+=2(Sn+),∴数列{Sn+}成等比数列,公比为2.∴S5+=(S2+)×33=×27,则S5=121.故答案为:121点睛:本题考查了由数列的前n项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分和两种情形,第二要掌握这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)已知函数的图像过点.(1)求的值,并求函数图像的对称中心的坐标;(2)当时,求函数的值域.参考答案:(1)∵函数图像过点∴…………2分
又∵,∴……4分
∴……………………5分
令,得……6分
∴函数的对称中心为……7分(2)∵,∴………………9分∴……………11分∴的值域为…………12分19.(12分)计算下列各式的值.(1);(2)lg5+(lg2)2+lg5·lg2+ln+lg·lg1000.参考答案:【考点】对数的运算性质;有理数指数幂的化简求值.【分析】(1)利用有理数指数幂的性质、运算法则求解.(2)利用对数的性质、运算法则求解.【解答】解:(1)=﹣1﹣+8=.(2)=lg5+lg2(lg2+lg5)++=lg5+lg2+2=3.【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意有理数指数幂、对数的性质、运算法则的合理运用.20.(本题12分)已知全集,,
(1)求但;(2)求。参考答案:略21.(12分)已知函数⑴判断函数的单调性,并证明;
⑵求函数的最大值和最小值.
参考答案:22.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为p元,写出函数p=f(x)的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价﹣成本)参考答案:【考点】函数模型的选择与应用;分段函数的应用.【分析】(1)根据当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,可求得一次订购量为550个时,每个零件的实际出厂价格恰好降为51元;(2)函数为分段函数,当0≤x≤100时,p为出厂单价;当100<x<550时,;当x≥550时,p=51,故可得结论;(3)根据工厂售出一个零件的利润=实际出厂单价﹣成本,求出利润函数,利用利润为6000元,可求得结论.【解答】解:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x0个,则(个)因此,当一次订购量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑臭水体治理合同(2篇)
- 南京航空航天大学《程序设计语言》2021-2022学年期末试卷
- 南京工业大学浦江学院《土木工程与环境》2021-2022学年第一学期期末试卷
- 南京工业大学浦江学院《汽车材料与成型技术》2022-2023学年第一学期期末试卷
- 《游子吟》说课稿
- 《我要的是葫芦》说课稿
- 作业打卡课件教学课件
- 南京工业大学《有限元技术及其应用》2023-2024学年第一学期期末试卷
- 南京工业大学《商务日语函电》2022-2023学年第一学期期末试卷
- 南京工业大学《景观设计三》2022-2023学年第一学期期末试卷
- 第8讲+隋唐的文化
- 管网设计分析报告
- 珍爱生命拒绝危险游戏
- 高中数学教师的专业发展路径
- 《地球是怎样形成的》课件
- 建筑机电系统全过程调试技术及工艺
- 六西格玛之控制阶段详解
- 《领导梯队:全面打造领导力驱动型公司》解读
- 护理质量安全与风险管理的案例分析
- 工程流体力学课后习题答案-(杜广生)
- AI智能客服应用实践
评论
0/150
提交评论