江苏省苏州市吴中学区重点达标名校2024届中考数学模拟试卷含解析_第1页
江苏省苏州市吴中学区重点达标名校2024届中考数学模拟试卷含解析_第2页
江苏省苏州市吴中学区重点达标名校2024届中考数学模拟试卷含解析_第3页
江苏省苏州市吴中学区重点达标名校2024届中考数学模拟试卷含解析_第4页
江苏省苏州市吴中学区重点达标名校2024届中考数学模拟试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市吴中学区重点达标名校2024届中考数学模拟精编试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是()A.1 B.2 C.3 D.42.的绝对值是()A.﹣4 B. C.4 D.0.43.下列实数中,有理数是()A. B. C.π D.4.如图是二次函数的部分图象,由图象可知不等式的解集是()A. B. C.且 D.x<-1或x>55.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A. B. C. D.6.下列几何体中,其三视图都是全等图形的是()A.圆柱 B.圆锥 C.三棱锥 D.球7.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2 B.m=2 C.m=–2 D.m≠28.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. B. C. D.9.下面计算中,正确的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2•a5=a710.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形二、填空题(共7小题,每小题3分,满分21分)11.在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____.12.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.13.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.14.不等式的解集是________________15.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)16.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.17.计算:=________.三、解答题(共7小题,满分69分)18.(10分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.19.(5分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21元?20.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.21.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?22.(10分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)23.(12分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.24.(14分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.【详解】解:∵图象开口向下,∴a<0,∵对称轴为直线x=2,∴>0,∴b>0,∵与y轴的交点在x轴的下方,∴c<0,∴abc>0,故①错误.∵对称轴为直线x=2,∴=2,∴a=,∵由图象可知当x=1时,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②错误.∵由图象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正确.∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,∴方程有一个根为x=-c,由③可知-c=OA,而当x=OA是方程的根,∴x=-c是方程的根,即假设成立,故④正确.综上可知正确的结论有三个:③④.故选B.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.2、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.3、B【解析】

实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易选择.【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,

B、无限循环小数为有理数,符合;

C、为无理数,故本选项错误;

D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案.4、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).由图象可知:的解集即是y<0的解集,∴x<-1或x>1.故选D.5、C【解析】

过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【详解】如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.6、D【解析】分析:任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛:本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.7、D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D8、D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.9、D【解析】

直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A.

(a+b)2=a2+b2+2ab,故此选项错误;B.

3a+4a=7a,故此选项错误;C.

(ab)3=a3b3,故此选项错误;D.

a2a5=a7,正确。故选:D.【点睛】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.10、C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(共7小题,每小题3分,满分21分)11、或【解析】

由,,得,所以.再以①和②两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又..又....若则,..则...若则,..则...故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.12、(,2).【解析】

解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.13、1【解析】

过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴A(1,1),B(2,),∵AC∥BD∥y轴,∴C(1,k),D(2,),∵△OAC与△ABD的面积之和为,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案为1.【点睛】本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.14、【解析】

首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15、1.【解析】试题解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案为1.16、1【解析】

解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.17、.【解析】

根据异分母分式加减法法则计算即可.【详解】原式.故答案为:.【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则.三、解答题(共7小题,满分69分)18、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OB⊥PB即可;(2)利用菱形、矩形的性质,求出圆心角∠COD即可解决问题.【详解】(1)如图连接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线;(2)①的长为cm时,四边形ADPB是菱形,∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的长=cm;②当四边形ADCB是矩形时,易知∠COD=120°,∴的长=cm,故答案为:cm,cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.19、(1)10,1;(2).【解析】

(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.【详解】解:(1)图象过点,,解得..的顶点坐标为.,∴当时,最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数图象的对称轴为直线,可知点关于对称轴的对称点是,又∵函数图象开口向下,∴当时,.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.20、见解析【解析】

证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形21、(1)1000(2)200(3)54°(4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×1501000(4)200001000答:校20000名学生一餐浪费的食物可供4000人食用一餐.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为.【解析】

(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.【详解】(1)被调查的总人数为25÷50%=50人;则步行的人数为50﹣25﹣15=10人;如图所示条形图,“骑车”部分所对应的圆心角的度数=×360°=108°;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论