吉林市长春汽车经济开发区第六中学2024届高考临考冲刺数学试卷含解析_第1页
吉林市长春汽车经济开发区第六中学2024届高考临考冲刺数学试卷含解析_第2页
吉林市长春汽车经济开发区第六中学2024届高考临考冲刺数学试卷含解析_第3页
吉林市长春汽车经济开发区第六中学2024届高考临考冲刺数学试卷含解析_第4页
吉林市长春汽车经济开发区第六中学2024届高考临考冲刺数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林市长春汽车经济开发区第六中学2024届高考临考冲刺数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差2.已知点(m,8)在幂函数的图象上,设,则()A.b<a<c B.a<b<c C.b<c<a D.a<c<b3.复数为纯虚数,则()A.i B.﹣2i C.2i D.﹣i4.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.5.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.6.已知、,,则下列是等式成立的必要不充分条件的是()A. B.C. D.7.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.8.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.9.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.10.若函数的图象如图所示,则的解析式可能是()A. B. C. D.11.设为抛物线的焦点,,,为抛物线上三点,若,则().A.9 B.6 C. D.12.若(是虚数单位),则的值为()A.3 B.5 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则的最小值是______.14.双曲线的离心率为_________.15.曲线在点处的切线方程为________.16.曲线在处的切线方程是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.18.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.19.(12分)已知函数,,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.20.(12分)已知函数(,),且对任意,都有.(Ⅰ)用含的表达式表示;(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.21.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.22.(10分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【点睛】本题考查统计问题,考查数据处理能力和应用意识.2、B【解析】

先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m﹣1=1,∴m=2,∴点(2,8)在幂函数f(x)=xn上,∴2n=8,∴n=3,∴幂函数解析式为f(x)=x3,在R上单调递增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.3、B【解析】

复数为纯虚数,则实部为0,虚部不为0,求出,即得.【详解】∵为纯虚数,∴,解得..故选:.【点睛】本题考查复数的分类,属于基础题.4、A【解析】

由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.5、B【解析】

为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.6、D【解析】

构造函数,,利用导数分析出这两个函数在区间上均为减函数,由得出,分、、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.【详解】构造函数,,则,,所以,函数、在区间上均为减函数,当时,则,;当时,,.由得.①若,则,即,不合乎题意;②若,则,则,此时,,由于函数在区间上单调递增,函数在区间上单调递增,则,;③若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.【点睛】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.7、C【解析】

将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.8、D【解析】

设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.9、D【解析】

试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.10、A【解析】

由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.11、C【解析】

设,,,由可得,利用定义将用表示即可.【详解】设,,,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.12、D【解析】

直接利用复数的模的求法的运算法则求解即可.【详解】(是虚数单位)可得解得本题正确选项:【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.14、2【解析】15、【解析】

求导,得到和,利用点斜式即可求得结果.【详解】由于,,所以,由点斜式可得切线方程为.故答案为:.【点睛】本题考查利用导数的几何意义求切线方程,属基础题.16、【解析】

利用导数的运算法则求出导函数,再利用导数的几何意义即可求解.【详解】求导得,所以,所以切线方程为故答案为:【点睛】本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、,;.【解析】

由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.18、(1)或;(2)【解析】

(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.①当时,则,所以;②当时,则,所以;⑧当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.19、(1)时,在上单调递增,时,在上递减,在上递增.(2).【解析】

(1)求出导函数,分类讨论,由确定增区间,由确定减区间;(2)由,利用(1)首先得或,求出的最小值即可得结论.【详解】(1)函数定义域是,,当时,,单调递增;时,令得,时,,递减,时,,递增,综上所述,时,在上单调递增,时,在上递减,在上递增.(2)易知,由函数单调性,若有唯一零点,则或.当时,,,从而只需时,恒成立,即,令,,在上递减,在上递增,∴,从而.时,,,令,由,知在递减,在上递增,,∴.综上所述,的取值范围是.【点睛】本题考查用导数研究函数的单调性,考查函数零点个数与不等式恒成立问题,解题关键在于转化,不等式恒成立问题通常转化为求函数的最值.这又可通过导数求解.20、(1)(2)见解析(3)见解析【解析】试题分析:利用赋值法求出关系,求函数导数,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,再根据函数图象和极值的大小判断零点的个数.试题解析:(Ⅰ)根据题意:令,可得,所以,经验证,可得当时,对任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在两个极值点,,则须有有两个不相等的正数根,所以或解得或无解,所以的取值范围,可得,由题意知,令,则.而当时,,即,所以在上单调递减,所以即时,.(Ⅲ)因为,.令得,.由(Ⅱ)知时,的对称轴,,,所以.又,可得,此时,在上单调递减,上单调递增,上单调递减,所以最多只有三个不同的零点.又因为,所以在上递增,即时,恒成立.根据(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三个不同的零点:,1,.综上所述,恰有三个不同的零点.【点睛】利用赋值法求出关系,利用函数导数,研究函数的单调性,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,利用函数的导数研究函数的单调性、极值,再根据函数图象和极值的大小判断零点的个数是近年高考压轴题的热点.21、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】

(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论