版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页2022年湖南省郴州市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)有理数﹣2,−12,0,A.﹣2 B.−12 C.0 2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.3.(3分)下列运算正确的是()A.a3+a2=a5 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(−5)24.(3分)一元二次方程2x2+x﹣1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根5.(3分)某校举行“预防溺水,从我做起”演讲比赛,7位评委给选手甲的评分如下:90,93,88,93,85,92,95,则这组数据的众数和中位数分别是()A.95,92 B.93,93 C.93,92 D.95,936.(3分)关于二次函数y=(x﹣1)2+5,下列说法正确的是()A.函数图象的开口向下 B.函数图象的顶点坐标是(﹣1,5) C.该函数有最大值,最大值是5 D.当x>1时,y随x的增大而增大7.(3分)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180° C.∠1=∠2 D.∠1=∠48.(3分)如图,在函数y=2x(x>0)的图象上任取一点A,过点A作y轴的垂线交函数y=−8x(x<0)的图象于点B,连接OA,A.3 B.5 C.6 D.10二、填空题(共8小题,每小题3分,共24分)9.(3分)二次根式x−5中,x的取值范围是.10.(3分)若a−bb=2311.(3分)点A(﹣3,2)关于x轴对称的点的坐标为.12.(3分)甲、乙两队参加“传承红色基因,推动绿色发展”为主题的合唱比赛,每队均由20名队员组成.其中两队队员的平均身高为x甲=x乙=160cm,身高的方差分别为s甲2=10.5,s13.(3分)如图,点A.B,C在⊙O上,∠AOB=62°,则∠ACB=度.14.(3分)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等于cm2.(结果用含π的式子表示)15.(3分)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=UR(Ω)100200220400I(A)2.21.110.55那么,当电阻R=55Ω时,电流I=A.16.(3分)如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于12DE长为半径作弧,在∠BAC内两弧相交于点P;作射线AP交BC于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于cm三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)17.(6分)计算:(﹣1)2022﹣2cos30°+|1−3|+(13)18.(6分)先化简,再求值:aba−b÷(1a+b+2ba219.(6分)如图,四边形ABCD是菱形,E,F是对角线AC上的两点,且AE=CF,连接BF,FD,DE,EB.求证:四边形DEBF是菱形.20.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.21.(8分)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:3,求背水坡新起点A与原起点B之间的距离.(参考数据:2≈1.41,3≈1.73.结果精确到0.122.(8分)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.(1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多能购买甲种有机肥多少吨?23.(8分)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.24.(10分)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)00.511.522.533.54变量h(cm)00.511.521.510.50在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.根据探究的结果,解答下列问题:①当a=1.5时,h=;当h=1时,a=.②将图2﹣1,图2﹣2中描出的点顺次连接起来.③下列说法正确的是.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;②当s=12时,求25.(10分)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.26.(12分)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
2022年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)有理数﹣2,−12,0,A.﹣2 B.−12 C.0 【解答】解:﹣2的绝对值是2,−12的绝对值是12,0的绝对值是0,3∵2>3∴﹣2的绝对值最大.故选A.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形,又是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:B.3.(3分)下列运算正确的是()A.a3+a2=a5 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(−5)2【解答】解:A:不是同类项不能合并,故A不符合题意;B:同底数幂相除,底数不变,指数相减,故B不符合题意;C:完全平方公式的结果是三项式,故C不符合题意;D:.(−5)2=故选:D.4.(3分)一元二次方程2x2+x﹣1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根【解答】解:∵Δ=12﹣4×2×(﹣1)=1+8=9>0,∴一元二次方程2x2+x﹣1=0有两个不相等的实数根,故选:A.5.(3分)某校举行“预防溺水,从我做起”演讲比赛,7位评委给选手甲的评分如下:90,93,88,93,85,92,95,则这组数据的众数和中位数分别是()A.95,92 B.93,93 C.93,92 D.95,93【解答】解:将这组数据从小到大排列为:85,88,90,92,93,93,95,∴这组数据的众数是93,中位数是92.故选:C.6.(3分)关于二次函数y=(x﹣1)2+5,下列说法正确的是()A.函数图象的开口向下 B.函数图象的顶点坐标是(﹣1,5) C.该函数有最大值,最大值是5 D.当x>1时,y随x的增大而增大【解答】解:y=(x﹣1)2+5中,x2的系数为1,1>0,函数图象开口向上,A错误;函数图象的顶点坐标是(1,5),B错误;函数图象开口向上,有最小值为5,C错误;函数图象的对称轴为x=1,x<1时y随x的增大而减小;x>1时,y随x的增大而增大,D正确.故选:D.7.(3分)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180° C.∠1=∠2 D.∠1=∠4【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.8.(3分)如图,在函数y=2x(x>0)的图象上任取一点A,过点A作y轴的垂线交函数y=−8x(x<0)的图象于点B,连接OA,A.3 B.5 C.6 D.10【解答】解:∵点A在函数y=2x(∴S△AOC=1又∵点B在反比例函数y=−8x(∴S△BOC=1∴S△AOB=S△AOC+S△BOC=1+4=5,故选:B.二、填空题(共8小题,每小题3分,共24分)9.(3分)二次根式x−5中,x的取值范围是x≥5.【解答】解:由x﹣5≥0得x≥5.10.(3分)若a−bb=23,则a【解答】解:根据a−bb=23得3a=5故答案为:5311.(3分)点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2).【解答】解:点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2),故答案为:(﹣3,﹣2).12.(3分)甲、乙两队参加“传承红色基因,推动绿色发展”为主题的合唱比赛,每队均由20名队员组成.其中两队队员的平均身高为x甲=x乙=160cm,身高的方差分别为s甲2=10.5,s【解答】解:∵两队队员的平均身高为x甲=x乙=160cm,s甲2即甲2>s乙2.∴如果单从队员的身高考虑,演出形象效果较好的队是乙队.故答案为:乙队.13.(3分)如图,点A.B,C在⊙O上,∠AOB=62°,则∠ACB=31度.【解答】解:∵∠AOB=62°,∴∠ACB=12∠故答案为:31.14.(3分)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等于60πcm2.(结果用含π的式子表示)【解答】解:根据题意该圆锥的侧面积=12×10π×12=60π(故答案为:60π.15.(3分)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=UR(Ω)100200220400I(A)2.21.110.55那么,当电阻R=55Ω时,电流I=4A.【解答】解:把R=220,I=1代入I=U1=U解得U=220,∴I=220把R=55代入I=220I=220故答案为:4.16.(3分)如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于12DE长为半径作弧,在∠BAC内两弧相交于点P;作射线AP交BC于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于8cm【解答】解:在△ABC中,∵∠C=90°,∴FC⊥AC,∵FG⊥AB,由作图方法可得:AF平分∠BAC,∴∠BAF=∠CAF,FC=FG,在Rt△ACF和Rt△AGF中,AF=AFFC=FG∴Rt△ABD≌Rt△AED(HL),∴AC=AG,∵AC=BC,∴AG=BC,∴△BFG的周长=GF+BF+BG=CF+BF+BG=BC+BG=AG+BG=AB=8cm.故答案为:8.三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)17.(6分)计算:(﹣1)2022﹣2cos30°+|1−3|+(13)【解答】解:(﹣1)2022﹣2cos30°+|1−3|+(13=1﹣2×3=1−3=3.18.(6分)先化简,再求值:aba−b÷(1a+b+2ba2【解答】解:aba−b÷(=ab=aba−b•=ab,当a=5+1,b=5−1时,原式=(=5﹣1=4.19.(6分)如图,四边形ABCD是菱形,E,F是对角线AC上的两点,且AE=CF,连接BF,FD,DE,EB.求证:四边形DEBF是菱形.【解答】证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠DAB=∠DCB,AC平分∠DAB,AC平分∠DCB,∴∠DAC=∠BAC=12∠DAB,∠DCA=∠ACB=1∴∠DAC=∠BAC=∠DCA=∠ACB,∵AE=CF,∴△DAE≌△BAE≌△BCF≌△DCF(SAS),∴DE=BE=BF=DF,∴四边形DEBF是菱形.20.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了200名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=54度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【解答】解:(1)①此次调查一共随机抽取的学生人数为:50÷25%=200(名),故答案为:200;②C组的人数为:200﹣30﹣50﹣70﹣20=30(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×30故答案为:54;(2)3200×70答:估计该校参加D组(阅读)的学生人数为1120名;(3)画树状图如下:共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,∴恰好抽中甲、乙两人的概率为21221.(8分)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:3,求背水坡新起点A与原起点B之间的距离.(参考数据:2≈1.41,3≈1.73.结果精确到0.1【解答】解:在Rt△BCD中,∵BC的坡度为i1=1:1,∴CDBD∴CD=BD=20米,在Rt△ACD中,∵AC的坡度为i2=1:3,∴CDAD∴AD=3CD=203∴AB=AD﹣BD=203−∴背水坡新起点A与原起点B之间的距离约为14.6米.22.(8分)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.(1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多能购买甲种有机肥多少吨?【解答】解:(1)设甲种有机肥每吨x元,乙种有机肥每吨y元,依题意得:x−y=1002x+y=1700解得:x=600y=500答:甲种有机肥每吨600元,乙种有机肥每吨500元.(2)设购买甲种有机肥m吨,则购买乙种有机肥(10﹣m)吨,依题意得:600m+500(10﹣m)≤5600,解得:m≤6.答:小姣最多能购买甲种有机肥6吨.23.(8分)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【解答】(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠PAE=60°,∵AB=AC,∴△ABC是等边三角形,∵⊙O的半径为6,∴BC=AB=12,∠C=60°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=12在Rt△CDE中,CE=CD•cosC=6×cos60°=3,答:CE的长是3.24.(10分)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)00.511.522.533.54变量h(cm)00.511.521.510.50在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.根据探究的结果,解答下列问题:①当a=1.5时,h=1.5;当h=1时,a=1或3.②将图2﹣1,图2﹣2中描出的点顺次连接起来.③下列说法正确的是A.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;②当s=12时,求【解答】解:(1)①从图1中,当a<2时,△ADE是等腰直角三角形,∴DE=AD=1.5,从图2,当h=1时,横坐标a对应1或3,故答案为:1.5;1或3;②如图,③当自变量a变化时,h随之变化,当a确定时,h有唯一一个值与之对应,所以h是a的函数;当自变量h确定时,a有两个值与之对应,所以a不是h的函数,故答案为A;(2)①当0≤a≤2时,DE=AD=a,S△ADE=12AD•DE当2<a≤4时,DE=AB﹣AD=4﹣a,∴S=1∴S=1②当S=12时,当0≤12∴a1=1,a2=﹣1(舍去),当2<≤4时,12∴a3=3,a4=5(舍去),综上所述:当S=12时,25.(10分)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=1∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM=A∴AG+GM的最小值为5.②方法一:如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴MNBF设AF=x,则BF=4﹣x,∴MN=12BF=1∵MN∥AB,∴△AFG∽△MNG,∴AFMN由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴x1解得x=1,即AF=1,由(1)得AFDE设DE=y,则AE=6﹣y,∴1y解得:y=3+5或y=3−∵0<3+5<6,0<3∴DE=3+5或DE=3−方法二:如图4,过点G作GH∥AB交BC于点H,∴△MHG∽△MBA,∴GMAM由(2)可知AG+MG的最小值为5,即AM=5,又∵GM=3,∴35∴GH=125,MH由GH∥AB得△CHG∽△CBF,∴GHFB即125解得FB=3,∴AF=AB﹣FB=1.由(1)得AFDE设DE=y,则AE=6﹣y,∴1y解得:y=3+5或y=3−∵0<3+5<6,0<3∴DE=3+5或DE=3−26.(12分)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 方案公司资料五篇
- 文艺部述职报告
- 用户装修技术资料
- 2024年度医疗设备购置担保履约保证协议3篇
- c 操作系统课程设计
- 招投标 课程设计
- 2025年山东淄博职业学院招聘高层次紧缺人才29人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁市金乡县事业单位共招考295人管理单位笔试遴选500模拟题附带答案详解
- 快把我哥带走观后感范文
- 2025年山东济南历城区卫生健康局所属事业单位招聘50人历年管理单位笔试遴选500模拟题附带答案详解
- 福建省泉州市各县区乡镇行政村村庄村名明细及行政区划代码
- PE 电熔焊接作业指导书
- 计算书-过滤器(纤维)
- 《有机波谱分析》期末考试试卷及参考答案
- 地源热泵维修规程
- 双块式无砟轨道道床板裂纹成因分析应对措施
- FZ∕T 62044-2021 抗菌清洁巾
- 净水厂课程设计
- 全级老年大学星级学校达标评价细则
- 模具维护保养PPT课件
- 《新媒体文案写作》试卷4
评论
0/150
提交评论