版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省牡丹江市一中高考数学一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.2.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.3.函数(且)的图象可能为()A. B. C. D.4.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.15.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为()附:若,则,.A.0.6826 B.0.8413 C.0.8185 D.0.95446.已知函数是定义在上的奇函数,函数满足,且时,,则()A.2 B. C.1 D.7.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种8.若复数满足,则()A. B. C.2 D.9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A. B. C. D.以上都不对10.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.11.设复数满足,在复平面内对应的点为,则不可能为()A. B. C. D.12.双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,.若,则实数a的值是______.14.已知单位向量的夹角为,则=_________.15.在的二项展开式中,所有项的二项式系数之和为256,则_______,项的系数等于________.16.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.18.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.19.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:20.(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.21.(12分)已知数列满足:,,且对任意的都有,(Ⅰ)证明:对任意,都有;(Ⅱ)证明:对任意,都有;(Ⅲ)证明:.22.(10分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.2、D【解析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.3、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.4、B【解析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.5、C【解析】
根据服从的正态分布可得,,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,,,则,,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.6、D【解析】
说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由知函数的周期为4,又是奇函数,,又,∴,∴.故选:D.【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础.7、B【解析】
利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题8、D【解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.9、A【解析】
首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,,,,,,,,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,,共种情况,故随机选出两个不同的数,其和等于的概率.故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.10、C【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.11、D【解析】
依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.12、A【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】
根据集合交集的定义即得.【详解】集合,,,,则a的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.14、【解析】
因为单位向量的夹角为,所以,所以==.15、81【解析】
根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【详解】由于所有项的二项式系数之和为,,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.16、【解析】
以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,,,设点,空间中的动点满足,,所以,整理得,,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)对范围分类整理得:,分类解不等式即可.(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解.【详解】当时,,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,∴,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题.18、(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.19、(Ⅰ)最小值为;(Ⅱ)见解析【解析】
(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】(Ⅰ)则当且仅当,即,时,所以的最小值为.(Ⅱ)要证明:,只需证:,即证明:,由,也即证明:.因为,所以当且仅当时,有,即,当时等号成立.所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.20、(1),(2)【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范围.试题解析:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范围是(﹣∞,﹣1].21、(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:(Ⅰ)证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立;(Ⅱ)由得,则,由(Ⅰ)知,,即对任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国强力去污湿巾行业投资前景及策略咨询研究报告
- 沼气洗涤设备的修理行业发展趋势预测及战略布局建议报告
- 国家考试的复习课程行业未来三年发展洞察及预测分析报告
- 材料硫化处理行业风险投资态势及投融资策略指引报告
- 云市场分析服务行业风险投资态势及投融资策略指引报告
- 江苏省如皋市2025届高三第一次调研测试语文试卷含解析
- 提供棒球场地行业市场前瞻与未来投资战略分析报告
- 电线识别线市场洞察报告
- 2025届河北省石家庄市重点中学高考语文考前最后一卷预测卷含解析
- 湖南省长沙二十一中2025届高三第五次模拟考试数学试卷含解析
- 人教版六年级语文上册第六单元习作:《学写倡议书》授课课件
- 2024年新华社招聘笔试参考题库附带答案详解
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 十七个岗位安全操作规程手册
- 英语希望之星决赛看图说话小作文.ppt
- 设计开发部诚信因素识别评价表和目标指标方案
- 膝关节韧带损伤PPT课件
- 《校园心理剧》PPT课件.ppt
- 六年级上册精通英语单词句子默写表
- 8以内加减法口算练习题
- 大连市水资源利用的现状和对策
评论
0/150
提交评论