版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市马里中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知圆的方程为,则它的圆心坐标和半径的长分别是(
)A.(2,0),5
B.(2,0),
C.(0,2),5
D.(0,2),参考答案:B方程可化为标准式,所以它的圆心坐标和半径的长分别是,本题选择B选项.
2.已知sin(+θ)<0,tan(π﹣θ)>0,则θ为第象限角.()A.一 B.二 C.三 D.四参考答案:B【考点】三角函数线.【分析】运用三角函数的诱导公式,可得cosθ<0,tanθ<0,由三角函数在各个象限的符号,即可判断θ为第几象限的角.【解答】解:sin(+θ)<0,可得cosθ<0,则θ的终边在第二、三象限或x轴的负半轴上;tan(π﹣θ)>0,可得﹣tanθ>0,即tanθ<0,则θ的终边在第二、四象限.故θ为第二象限的角.故选:B.3.某公司为激励创新,计划逐年加大研发奖金投入,若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(
)(参考数据:,,)A.2018年 B.2019年 C.2020年 D.2021年参考答案:B试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.4.(5分)设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f(x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是() A. f(1.5)<f(3.5)<f(6.5) B. f(6.5)<f(3.5)<f(1.5) C. f(3.5)<f(1.5)<f(6.5) D. f(3.5)<f(6.5)<f(1.5)参考答案:C考点: 函数的周期性.专题: 函数的性质及应用.分析: 由条件可知函数f(x)的周期为6,利用函数周期性,对称性和单调性之间的关系即可得到结论.解答: 解:∵f(x)=f(x+6),∴f(x)在R上以6为周期,∵函数的对称轴为x=3,∴f(3.5)=f(2.5),f(6.5)=f(0.5)∵f(x)在(0,3)内单调递减,0.5<1.5<2.5∴f(2.5)<f(1.5)<f(0.5)即f(3.5)<f(1.5)<f(6.5)故选:C点评: 本题主要考查了函数的周期性与单调性的综合运用,利用周期性把所要比较的变量转化到同一单调区间,利用函数的单调性比较函数值的大小,是解决此类问题的常用方法.5.已知则
(
)A.
B.
C.
D.参考答案:B6.函数的值域是(
)A.
B.
C.
D.参考答案:B7.已知集合A=B={(x,y)|x,y∈R},映射f:A→B,(x,y)→(x+y,x﹣y),则在映射f下,象(2,1)的原象是(
)A.(,﹣) B.(,) C.(3,1) D.(1,3)参考答案:B【考点】映射.【专题】方程思想;定义法;函数的性质及应用.【分析】根据函数和映射的定义建立方程进行求解即可.【解答】解:∵映射f:A→B,(x,y)→(x+y,x﹣y),∴由,即,即象(2,1)的原象是(,),故选:B【点评】本题主要考查映射的应用,根据映射关系建立方程关系是解决本题的关键.8.函数的定义域为(
)A.
B.
C.
D.参考答案:C9.在空间直角坐标系中,给定点M(2,﹣1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则|AB|=()A.2 B.4 C. D.参考答案:A【考点】空间两点间的距离公式;空间中的点的坐标.【分析】先根据点的对称求得A和B的坐标,进而利用两点的间的距离公式求得|AB|.【解答】解:∵点M(2,﹣1,3)关于平面xoy对称点A它的横坐标与纵坐标不变,竖坐标相反,所以A(2,﹣1,﹣3);M(2,﹣1,3)关于x轴的对称点分别为B,它的横坐标不变,纵坐标相反,竖坐标相反,有B(2,1,﹣3),∴|AB|==2,故选A.10.如图,在平面内,是边长为3的正三角形,四边形是边长为1且以为中心的正方形,为边的中点,点是边上的动点,当正方形绕中心转动时,的最大值为A.
B.C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知直线和平面,若,则与的位置关系是
.参考答案:
12.函数的定义域为
.参考答案:(0,]13.已知正数a,b满足,则的最小值为
.参考答案:7已知正数a,b满足ab=a+b+1,则,a>0,得到b>1,所以,当且仅当b=2时等号成立;所以a+2b的最小值为7.
14.(5分)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是
参考答案:.考点: 平面图形的直观图.专题: 计算题.分析: 水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解答: 水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故答案为:2+.点评: 本题考查水平放置的平面图形的直观图斜二测画法,也可利用原图和直观图的面积关系求解.属基础知识的考查.15.某校高一、高二、高三年级学生共700人,其中高一年级300人,高二年级200人,高三年级200人,现采用分层抽样的方法抽取一个容量为35的样本,那么从高一年级抽取的人数应为
人.参考答案:15【考点】B3:分层抽样方法.【分析】先求出抽取样本的比例是多少,再计算从高二学生中应抽取的人是多少.【解答】解:根据题意,得抽取样本的比例是=,∴从高一学生中应抽取的人数为300×=15.故答案为15.16.已知数列成等差数列,且,则=
参考答案:-略17.设集合A={1,2,3},B={2,4,5},则A∪B=
.参考答案:{1,2,3,4,5}【考点】并集及其运算.【专题】计算题.【分析】集合A与集合B的所有元素合并到一起,构成集合A∪B,由此利用集合A={1,2,3},B={2,4,5},能求出A∪B.【解答】解:∵集合A={1,2,3},B={2,4,5},∴A∪B={1,2,3,4,5}.故答案为:{1,2,3,4,5}.【点评】本题考查集合的并集及其运算,是基础题.解题时要认真审题,仔细解答.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线和,求直线与直线的夹角。参考答案:19.(本大题满分12分,每小题6分)参考答案:(本题满分12分,每小题6分)ks5u略20.已知,,当k为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?参考答案:【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.【分析】先求出的坐标,(1)利用向量垂直的充要条件:数量积为0,列出方程求出k.(2)利用向量共线的坐标形式的充要条件:坐标交叉相乘相等,列出方程求出k,将k代入两向量的坐标,判断出方向相反.【解答】解:k=(1,2)﹣3(﹣3,2)=(10,﹣4)(1),得=10(k﹣3)﹣4(2k+2)=2k﹣38=0,k=19(2),得﹣4(k﹣3)=10(2k+2),k=﹣此时k(10,﹣4),所以方向相反.21.
如图所示,四边形是边长为的正方形,分别是上的点,且,现沿折起,使平面⊥平面.(1)求证平面⊥面;(4分)(2)设(),到平面的距离为,试用表示;(6分)(3)点是中点时,值是多少?(2分)参考答案:略22.如图,在四棱锥P--ABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.(1)求证:平面PAB⊥平面PCB;(2)求证:PD∥平面EAC.参考答案:解(1)∵PA⊥底面ABCD,∴PA⊥BC,又AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.(3分)又BC?平面PCB,∴平面PAB⊥平面PCB.(6分)(2)∵PA⊥底面ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级数学计算题专项练习1000题汇编
- 二年级数学(上)计算题专项练习
- 荷花田管护合同(2篇)
- 南京工业大学浦江学院《土木工程施工技术与组织》2022-2023学年第一学期期末试卷
- 林口镇污水治理工程排水管网工程二期施工组织设计
- 瑞庆汽车发动机技术有限公司联合厂房施工组织设计
- 《醉翁亭记》说课稿
- 《用数学》说课稿
- 《我们的梦想》说课稿
- 科室结对子协议书(2篇)
- 汽车美容装潢技术电子教案 2.2-汽车内部清洗护理
- 2023年中国铁塔招聘笔试真题
- DB11∕T 2103.4-2023 社会单位和重点场所消防安全管理规范 第4部分:大型商业综合体
- 常规弱电系统施工单价表纯劳务
- 2024年代持法人报酬协议书模板范本
- 2024年贵州贵阳市信访局招聘历年高频难、易错点500题模拟试题附带答案详解
- 2024年人教版六年级数学上册《第5单元第7课时 扇形的认识》单元整体教学课件
- 2023湖南文艺出版社五年级音乐下册全册教案
- 创作志愿者文化衫
- 国开2024秋《形势与政策》专题测验1-5参考答案
- 【PPP项目风险评估与控制探究的国内外文献综述3900字】
评论
0/150
提交评论