山西省阳泉市南坳职业中学高三数学理月考试题含解析_第1页
山西省阳泉市南坳职业中学高三数学理月考试题含解析_第2页
山西省阳泉市南坳职业中学高三数学理月考试题含解析_第3页
山西省阳泉市南坳职业中学高三数学理月考试题含解析_第4页
山西省阳泉市南坳职业中学高三数学理月考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省阳泉市南坳职业中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则MN=

A.{x|x<-5或x>-3}

B.{x|-5<x<5}

C.{x|-3<x<5}

D.{x|x<-3或x>5}参考答案:A因为集合M={x|-3<x≤5},N={x|x<-5或x>5},所以MN={x|x<-5或x>-3}。2.设集合P={1,2,3,4},集合M={3,4,5}全集U=R,则集合P?UM=

(

)A.{1,2}

B.{3,4} C.{1}

D.{-2,-1,0,1,2}参考答案:A因为集合P={1,2,3,4},集合M={3,4,5}全集U=R,则?UM={1,2},集合P?UM={1,2},故选A.3.已知下面四个命题:①;②;③;④.其中正确的个数为(

)A.1个

B.2个

C.3个

D.4个参考答案:C试题分析:由于,,,,所以正确命题有①,②,④,选.考点:1.平面向量的线性运算;2.平面向量的数量积.4.已知,且,现给出如下结论:①;②;③;④.其中正确结论的序号是(

A.①③

B.①④

C.②③

D.②④参考答案:C5.设为定义在R上的奇函数,当时,,则(

)A.-1

B.-4

C.1

D.4参考答案:【知识点】函数的值.B1

【答案解析】B

解析:∵f(x)为定义在R上的奇函数,∴f(0)=0,解得a=﹣1.∴当x≥0时,f(x)=3x﹣2x﹣1.∴f(﹣2)=﹣f(2)=﹣(32﹣2×2﹣1)=﹣4.故选B.【思路点拨】根据奇函数的性质f(0)=0,求得a的值;再由f(﹣2)=﹣f(2)即可求得答案.6.命题“若,则”的逆否命题是(

)A.“若,则”

B.“若,则”C.“若x,则” D.“若,则”参考答案:C7.已知函数f(x)=?log2x,在下列区间中,函数f(x)的零点所在区间为(

)A、(0,1)

B、(1,2)

C、(2,4)

D、(4,+∞)参考答案:C试题分析:因为在定义域内是减函数,且,,根据零点存在定理可知,函数的零点在区间上,故选C.考点:1.函数与方程;2.零点存在定理;3.函数单调性.8.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.

B.

C.

D.参考答案:B9.是单位向量,

=1

则的范围为(

)A.

B.

C.

D.参考答案:D设

设所以所以所以=1即以为圆心,1为半径的圆上的点与距离所以最长:过圆心加半径

最短:过圆心减半径所以注意:学会题目和图形之间的转换,题干的运用,最重要的是不要缺少题干中的条件运用10.函数的单调递增区间是

(

)

A.B.C.和

D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.将函数y=sin2x﹣cos2x的函数图象向右平移m个单位以后得到的图象与y=ksinxcosx(k>0)的图象关于对称,则k+m的最小正值是.参考答案:2+【考点】H2:正弦函数的图象;GL:三角函数中的恒等变换应用.【分析】由题意可得y=﹣cos(2x﹣2m)的图象和y=sin2x(k>0)的图象关于点对称,设点P(x0,y0)为y=﹣cos(2x﹣2m)上任意一点,则该点关于对称点为在y=sin2x(k>0)的图象上,故有,求得k=2,且cos(2x0﹣)=cos(2x0﹣2m),由此求得k+m的最小正值.【解答】解:将函数y=sin2x﹣cos2x=﹣cos2x的函数图象向右平移m个单位以后得到y=﹣cos2(x﹣m)=﹣cos(2x﹣2m)的图象,根据所得图象与y=ksinxcosx=sin2x(k>0)的图象关于对称,设点P(x0,y0)为y=﹣cos(2x﹣2m)上任意一点,则该点关于对称点为在y=sin2x(k>0)的图象上,故有,求得k=2,sin(2x0﹣)=cos(2x0﹣2m),即cos(2x0﹣)=cos(2x0﹣2m),∴﹣2m=﹣+2kπ,k∈Z,即2m=﹣2kπ,k∈Z,故m的最小正值为,则k+m的最小正值为2+.【点评】本题主要考查三角恒等变换,正弦函数的图象,两个函数的图象关于某个点对称的性质,属于中档题.12.已知函数是上的奇函数,且时,,则=

.参考答案:13.已知中,AB=,BC=1,tanC=,则AC等于______.参考答案:2由,所以。根据正弦定理可得,即,所以,因为,所以,所以,即,所以三角形为直角三角形,所以。14.在中,若,则参考答案:略15.已知函数,若对任意x∈R,都有f(a+x)=f(a-x),则=__________.参考答案:答案:016.已知圆(x-2)2+y2=1经过椭圆+=1(a>b>0)的一个顶点和一个焦点,则此椭圆的离心率为

.参考答案:17.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC的值为.参考答案:3【考点】两角和与差的正切函数.【专题】三角函数的求值.【分析】利用等差数列列出关系式,利用三角形的内角和以及两角和的正切函数,化简求解即可.【解答】解:由题意知:A≠,B≠,C≠,且A+B+C=π,tanA,tanB,tanC依次成等差数列,∴2tanB=tanA+tanC,∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,∴tanAtanC=3.故答案为:3.【点评】本题考查数列的应用,两角和的正切函数定义域,考查计算能力,属于基本知识的考查.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P-ABCD中,,,点E为棱PB的中点.

(1)若,求证:;(2)求证:CE//平面PAD.参考答案:证明:(1)取的中点,连结,因为,所以△为等腰三角形,所以.因为,所以△为等腰三角形,所以.又,所以平面.

因为平面,所以.

(2)由为中点,连,则,又平面,所以平面.

由,以及,所以,又平面,所以平面.

又,所以平面平面,

而平面,所以平面.

19.(本大题满分10分)已知定义在R上的函数,其中,且当时,.(1)求a,b的值;(2)若将的图像沿x轴向左平移个单位,得到函数的图像,令,求h(x)的最大值.参考答案:(1)∵f(x)=又∵当时,∴,则∴∴,∴,

(2)由(1)得∵将的图像沿轴向左平移个单位,得到函数的图像∴∴∴的最大值为

20.(本小题满分14分)已知在递增等差数列中,,成等比数列数列的前n项和为Sn,且.(1)求数列、的通项公式;(2)设,求数列的前和.参考答案:21..已知抛物线的焦点为F,x轴上方的点在抛物线上,且,直线l与抛物线交于A、B两点(点A、B与M不重合),设直线MA,MB的斜率分别为,.(Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线l恒过定点并求出该定点的坐标.参考答案:(Ⅰ);(Ⅱ)见解析.【分析】(Ⅰ)根据及抛物线定义可求p,从而得到方程;(Ⅱ)设出直线方程,与抛物线方程相联立,写出韦达定理,结合可得关系,从而得到定点坐标.【详解】(Ⅰ)由抛物线的定义可以,,抛物线的方程为.(Ⅱ)由(Ⅰ)可知,点的坐标为当直线斜率不存在时,此时重合,舍去.当直线斜率存在时,设直线的方程为设,将直线与抛物线联立得:又,即,,,将①代入得,即得或当时,直线为,此时直线恒过;当时,直线为,此时直线恒过(舍去)所以直线恒过定点.【点睛】本题主要考查抛物线的定义及直线和抛物线的综合问题,直线过定点一般是寻求之间的关系式.侧重考查数学运算的核心素养.22.)在中,边、、分别是角、、的对边,且满足:.(1)求;(2)若,,求边,的值.

参考答案:(1)(2),或

.(1)在△ABC中,∵bcosC=(3a-c)cosB,由正弦定理可得sinBcosC=(3sinA-sinC)cosB,

∴3sinA?cosB-sinC?cosB=sinBcosC,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论