版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市中山高级中学高一数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,函数在区间[]上的最大值与最小值之差为,则
A.4 B.2 C. D.参考答案:A2.(4分)已知a=,b=20.8,c=2log52,则a,b,c的大小关系为() A. c<b<a B. b<c<a C. b<a<c D. c<a<b参考答案:D考点: 对数值大小的比较.专题: 函数的性质及应用.分析: 利用指数函数与对数函数的单调性即可得出.解答: ∵a=>1,b=20.8>20.5=,c=2log52=log54<1,∴b>a>c.故选:D.点评: 本题考查了指数函数与对数函数的单调性,属于基础题.3.若,,,则的最小值为(
)A.5 B.6 C.8 D.9参考答案:D【分析】把看成()×1的形式,把“1”换成,整理后积为定值,然后用基本不等式求最小值.【详解】∵()(a+2b)=(312)≥×(15+29等号成立的条件为,即a=b=1时取等所以的最小值为9.故选D.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题4.下列各组函数中,两个函数相等的是(
)A.与
B.与C.与
D.与参考答案:C5.已知函数在区间上是增函数,则的取值范围是(
)A.
B.
C.
D.参考答案:A6.在空间直角坐标系中A.B两点的坐标为A(2,3,1),B(-1,-2,-4),则A.B点之间的距离是A.59
B.
C.7
D.8参考答案:B略7.函数与图象交点的横坐标所在的区间是(
)A.[1,2]
B.[0,1]
C.[-1,0]
D.[2,3]参考答案:A8.(5分)已知f(x)=x7+ax5+bx﹣5,且f(﹣3)=5,则f(3)=() A. ﹣15 B. 15 C. 10 D. ﹣10参考答案:A考点: 函数奇偶性的性质.专题: 计算题.分析: 设g(x)=x7+ax5+bx,则可证明其为奇函数,从而f(x)=g(x)﹣5,先利用f(﹣3)=5求得g(3),再代入求得f(3)即可解答: 设g(x)=x7+ax5+bx,∵g(﹣x)=﹣x7﹣ax5﹣bx=﹣g(x),即g(﹣x)=﹣g(x)∵f(﹣3)=g(﹣3)﹣5=5∴g(﹣3)=10,∴g(3)=﹣g(﹣3)=﹣10∴f(3)=g(3)﹣5=﹣10﹣5=﹣15故选A点评: 本题考查了利用函数的对称性求函数值的方法,发现函数f(x)为奇函数加常数的特点,是快速解决本题的关键9.a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出六个命题:其中正确的命题是()A.①②③
B.①④⑤
C.①④
D.①④⑤⑥参考答案:C略10.设四棱锥P-ABCD的底面不是平行四边形,用平面去截此四棱锥(如右图),使得截面四边形是平行四边形,则这样的平面有(
)A.不存在 B.只有1个C.恰有4个 D.有无数多个参考答案:D侧面PAD与侧面PBC相交,侧面PAB与侧面PCD相交,设两组相交平面的交线分别为m,n,由m,n决定的平面为β,作α与β且与四条侧棱相交,交点分别为A1,B1,C1,D1则由面面平行的性质定理得:A1B1∥m∥B1C1,A1D1∥n∥B1C1,从而得截面必为平行四边形.由于平面α可以上下移动,则这样的平面α有无数多个.故选D.
二、填空题:本大题共7小题,每小题4分,共28分11.已知关于x的函数y=(t∈R)的定义域为D,存在区间[a,b]?D,f(x)的值域也是[a,b].当t变化时,b﹣a的最大值=.参考答案:【考点】函数的定义域及其求法;函数的值域.【专题】函数的性质及应用.【分析】由函数的单调性可得a=f(a),且b=f(b),故a、b是方程x2+(t﹣1)x+t2=0的两个同号的实数根.由判别式大于0,容易求得t∈(﹣1,).由韦达定理可得b﹣a==,利用二次函数的性质求得b﹣a的最大值.【解答】解:关于x的函数y=f(x)==(1﹣t)﹣的定义域为(﹣∞,0)∪(0,+∞),且函数在(﹣∞,0)、(0,+∞)上都是增函数.故有a=f(a),且b=f(b),即a=,b=.即a2+(t﹣1)a+t2=0,且b2+(t﹣1)b+t2=0,故a、b是方程x2+(t﹣1)x+t2=0的两个同号的实数根.由判别式大于0,容易求得t∈(﹣1,).而当t=0时,函数为y=1,不满足条件,故t∈(﹣1,)且t≠0.由韦达定理可得b﹣a==,故当t=﹣时,b﹣a取得最大值为,故答案为:.【点评】本题主要考查求函数的定义域,以及二次函数的性质,求函数的最值,属于中档题.12.在中,点满足,过点的直线分别交射线于不同的两点,若,则的最大值是
参考答案:13.已知或,(a为实数).若的一个充分不必要条件是,则实数a的取值范围是_______.参考答案:[1,+∞)【分析】求出和中实数的取值集合,然后根据题中条件得出两集合的包含关系,由此可得出实数的取值范围.【详解】由题意可得,,,由于的一个充分不必要条件是,则,所以,.因此,实数的取值范围是.故答案:.【点睛】本题考查利用充分必要条件求参数的取值范围,一般转化为两集合的包含关系,考查化归与转化思想,属于中等题.14.已知函数在区间上恒有意义,则实数的取值范围为__▲__参考答案:15.已知直线⊥平面,直线m平面,有下列命题:①∥⊥m;
②⊥∥m;
③∥m⊥;
④⊥m∥.其中正确命题的序号是___________.参考答案:①与③16.已知角α的终边过点P(3,4),则=.参考答案:﹣【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由题意可得x,y,r,由任意角的三角函数的定义可得sinα,利用诱导公式化简所求求得结果.【解答】解:∵由题意可得x=3,y=4,r=5,由任意角的三角函数的定义可得sinα==,∴=﹣sinα=﹣.故答案为:﹣.17.直线过点(-3,-2)且在两坐标轴上的截距相等,则这直线方程为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若是由“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式.参考答案:(1);(2)试题分析:⑴由已知得,求解即可求得实数的值;⑵设,则,继而证得是偶函数,可得与的关系,得到函数解析式,设,则由,即可求解的最小值为解析:(1)由已知得,即,得,所以.(2)设,则.由,得,整理得,即,即对任意恒成立,所以.所以.设,令,则,改写为方程,则由,且,得,检验时,满足,所以,且当时取到“=”.所以,又最小值为1,所以,且,此时,所以.19.(本小题满分12分)已知向量,且。(Ⅰ)求tanA的值;(Ⅱ)求函数R)的值域.(12分)。参考答案:(Ⅰ)由题意得=sinA-2cosA=0,............................................................................................2分因为cosA≠0,所以tanA=2.................................................................................4分(Ⅱ)由(Ⅰ)知tanA=2得.......7分因为xR,所以.当时,f(x)有最大值,.............9分当sinx=-1时,f(x)有最小值-3,.....................................................................11分所以所求函数f(x)的值域是.............................................................12分20.(12分)已知角a是第三象限角,且f(a)=(Ⅰ)化简f(a)(Ⅱ)若sin(2π﹣a)=,求f(a)的值.参考答案:(I)﹣cosa.(II).考点:运用诱导公式化简求值;同角三角函数基本关系的运用.专题:三角函数的求值.分析:(Ⅰ)由条件利用同角三角函数的基本关系、诱导公式化简f(a),可得结果.(Ⅱ)由条件求得sina=﹣,根据角a是第三象限角,求得cosa的值,可得f(a)=﹣cosa的值.解答:(Ⅰ)f(a)===﹣=﹣cosa.(Ⅱ)∵sin(2π﹣a)=﹣sina=,∴sina=﹣.又角a是第三象限角,∴cosa=﹣=﹣,∴f(a)=﹣cosa=.点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.21.已知,若在上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数的单调性,并求出的最小值.参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年离婚财产分割及债务处理标准协议模板
- 2024年版:金融借款中介服务费协议
- 2024年度单间房屋租赁合同(含租赁保证金扣除条件)3篇
- 课题申报书:单位制变迁视野下西部地区大学教师流动治理机制研究
- 课题申报书:大型交通基础设施项目环境扰动的锁定机理与解锁策略研究
- 课题申报书:促进新质生产力发展的劳动者技能需求与高等教育模式变革研究
- 2025版假离婚协议书与婚姻财产保全及子女监护权变更合同3篇
- 2025年智能家居体验店合伙开店合同模板下载2篇
- 2024年防洪排涝工程沉井施工劳务合同
- 2024年软件购销协议标准化模板
- 中国珠宝市场发展报告(2019-2024)(中英)-中国珠宝玉石首饰行业协会
- 《零售药店实务》期末考试复习题及答案
- 培训中心商业计划书
- 2024版新能源汽车购置补贴及服务保障合同3篇
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 期末测试卷-2024-2025学年语文四年级上册统编版
- 开票税点自动计算器
- 医疗器械质量安全风险会商管理制度
- 消防设施安全检查表
- 抑郁病诊断证明书
- 幼儿园绘本故事:《小年兽》 课件
评论
0/150
提交评论