版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安市淮安区2023-2024学年中考数学押题卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.2 B.1 C.0 D.﹣12.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy3.下列运算正确的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-34.下列各点中,在二次函数的图象上的是()A. B. C. D.5.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A.B.C.D.6.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A. B. C. D.7.方程5x+2y=-9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-88.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A.916 B.34 C.±9.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是()A.-6 B.-5 C.-6或-5 D.6或510.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.12.要使式子有意义,则的取值范围是__________.13.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).14.一个多项式与的积为,那么这个多项式为.15.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.16.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.三、解答题(共8题,共72分)17.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由18.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?19.(8分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.20.(8分)如图,在中,以为直径的⊙交于点,过点作于点,且.()判断与⊙的位置关系并说明理由;()若,,求⊙的半径.21.(8分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.22.(10分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使他的作法如下:(1)以点O为端点画射线,.(2)在上依次截取,.(3)在上截取.(4)联结,过点B作,交于点D.所以:线段________就是所求的线段x.①试将结论补完整②这位同学作图的依据是________③如果,,,试用向量表示向量.23.(12分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)24.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m=%,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
按照分式运算规则运算即可,注意结果的化简.【详解】解:原式=,故选择B.【点睛】本题考查了分式的运算规则.2、D【解析】
A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【详解】A.-2x-2y32x3y=-4xy4,故本选项错误;B.
(−2a2)3=−8a6,故本项错误;C.
(2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.3、D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.4、D【解析】
将各选项的点逐一代入即可判断.【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D.【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.5、B【解析】从几何体的正面看可得下图,故选B.6、D【解析】
由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,
由5头牛、2只羊,值金10两可得:5x+2y=10,
由2头牛、5只羊,值金8两可得2x+5y=8,
则7头牛、7只羊,值金18两,据此可知7x+7y=18,
所以方程组错误,
故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.7、D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8、D【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组2a=-3k①-3=8ak②【详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.9、A【解析】试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,∴x1+x2=2,x1∙x2=-1∴=.故选A.10、D【解析】
直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、6【解析】
根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48
,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB
,∴AD=BD=CD=AB,∵AP2-PB2=48
,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一12、【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.13、1.【解析】
设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.14、【解析】试题分析:依题意知=考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。15、3.53×104【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.16、AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.三、解答题(共8题,共72分)17、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【解析】
试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高18、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,,解得,,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,由题意得,30a+40(200﹣a)≥7000,解得:a≤100,则最多应购进A种机器人100台.【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.19、(1)作图见解析;(2)证明书见解析.【解析】
(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B=∠E,AB=CE,根据等量代换可以求得答案.【详解】解:(1)如图1,以N为圆心,以MQ为半径画圆弧;以M为圆心,以NQ为半径画圆弧;两圆弧的交点即为所求.(2)如图,延长DA至E,使得AE=CB,连结CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考点:1.尺规作图;2.全等三角形的判定和性质.20、(1)DE与⊙O相切,详见解析;(2)5【解析】
(1)根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE=90°,说明相切的位置关系。(2)根据直径所对的圆心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推导出∠DAB=∠C,可判定△ABC是等腰三角形,再根据BD⊥AC可知D是AC的中点,从而得出AD的长度,再在Rt△ADB中计算出直径AB的长,从而算出半径。【详解】(1)连接OD,在⊙O中,因为AB是直径,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因为∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD过圆心,D是圆上一点,故DE是⊙O切线上的一段,因此位置关系是直线DE与⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,则∠BDE+∠ABD=90°,因为DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,则∠ABD=∠DBE,又因为BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底边BC上的高,则D是AC的中点,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB为直径,所以⊙O的半径是5.【点睛】本题主要考查圆中的计算问题和与圆有关的位置关系,解本题的要点在于求出AD的长,从而求出AB的长.21、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】
(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.【详解】解:(1)∵点A(m,2)在双曲线上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,设P(n,0),则有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.22、①CD;②平行于三角形一边的直线截其它两边(或两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班鱼主题课程设计
- 2025版无人驾驶汽车技术研发合作合同样本
- 2025版豪门重生秘籍:文娘离异后情感修复合同3篇
- 2025年度办公家具购置与员工满意度调查与提升合同3篇
- 2025版跨境电商股权认购及供应链管理合同3篇
- 2025版知识产权转让及许可合同范本3篇
- 二零二五年企业品牌授权与特许经营合同范本2篇
- 二零二五年度2025版服装店加盟分公司特许经营合同3篇
- 2025年度按时缴纳船舶吨税保证合同3篇
- 2025年度旅游行业导游及领队劳动合同规范2篇
- 大学试卷(示范)
- 高职院校智能制造实验室实训中心建设方案
- 劳动与社会保障法-001-国开机考复习资料
- 青少年足球培训
- 【MOOC】寄生人体的恶魔-医学寄生虫学-南方医科大学 中国大学慕课MOOC答案
- 2024年护理质量分析
- 2025人教版九年级英语全册知识点清单
- 医院紧急情况一键报警制度建设
- 2024版 新能源电站单位千瓦造价标准
- 企业培训师竞聘
- 惠州学院《电机与拖动基础》2023-2024学年期末试卷
评论
0/150
提交评论