版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省新泰一中2024年高考数学五模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.42.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.23.函数的图象大致为()A. B.C. D.4.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.5.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于6.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]7.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.48.计算等于()A. B. C. D.9.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.10.如图,在四边形中,,,,,,则的长度为()A. B.C. D.11.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.112.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.1764二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,则的最小值是________.14.正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是______.15.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.16.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为等腰梯形,,为等腰直角三角形,,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.18.(12分)已知函数(I)当时,解不等式.(II)若不等式恒成立,求实数的取值范围19.(12分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.20.(12分)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.21.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线①,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.22.(10分)设数列是等差数列,其前项和为,且,.(1)求数列的通项公式;(2)证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.2、A【解析】
利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.3、A【解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.4、C【解析】
将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.5、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.6、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.7、A【解析】
则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.8、A【解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.9、A【解析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.10、D【解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.11、A【解析】
由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.12、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.14、【解析】
设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解.【详解】解:设正四面体的棱长为,则底面积为,底面外接圆的半径为,高为.∴正四面体的体积,圆柱的体积.则.故答案为:.【点睛】本题主要考查多面体与旋转体体积的求法,考查计算能力,属于中档题.15、或【解析】
依题意,当时,由,即,解得;当时,由,解得或(舍去).综上,得或.16、【解析】
设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程.【详解】解:设以直线为渐近线的双曲线的方程为,∵双曲线经过抛物线焦点,∴,∴双曲线方程为,故答案为:.【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【详解】(1)证明:如图1,取的中点,连接.,,,,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,,易知,.则,,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,,,所以,所以平面与平面所成的二面角的正弦值为.【点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(1)根据零点分区间法,去掉绝对值解不等式;(2)根据绝对值不等式的性质得,因此将问题转化为恒成立,借此不等式即可.试题解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集为.(Ⅱ)由不等式的性质得:,要使不等式恒成立,则当时,不等式恒成立;当时,解不等式得.综上.所以实数的取值范围为.19、(1);(2).【解析】试题分析:(1)设等差数列满的首项为,公差为,代入两等式可解。(2)由(1),代入得,所以通过裂项求和可求得。试题解析:(1)设等差数列的公差为,则由题意可得,解得.所以.(2)因为,所以.所以.20、(1).(2)为定值.过程见解析.【解析】分析:(1)焦距说明,用点差法可得=.这样可解得,得椭圆方程;(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.详解:(1)由题意可知,设,代入椭圆可得:,两式相减并整理可得,,即.又因为,,代入上式可得,.又,所以,故椭圆的方程为.(2)由题意可知,,当为长轴时,为短半轴,此时;否则,可设直线的方程为,联立,消可得,,则有:,所以设直线方程为,联立,根据对称性,不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广播器材采购合同范例
- 发廊入股合同范例
- 夫妻合伙生意合同范例
- 天津滨海汽车工程职业学院《代谢组学》2023-2024学年第一学期期末试卷
- 云南代建合同范例
- 农资经营聘用合同范例
- 停车场 施工合同范例
- cro服务合同范例
- 保险会计合同范例
- 高级财务会计模拟习题(含答案)
- 红色简约中国英雄人物李大钊课件
- 2024版《大学生职业生涯规划与就业指导》 课程教案
- 上海市住院医师规范化培训公共科目考试题库-重点传染病防治知识
- 人民日报出版社有限责任公司招聘笔试题库2024
- 2024年煤矿事故汇编
- Unit 2 Different families(教学设计)-2024-2025学年人教PEP版英语三年级上册
- 西师大版五年级上册小数混合运算题100道及答案
- 2022年7月国家开放大学本科《中国法律史》期末纸质考试试题及答案
- 行政文秘笔试题
- 2024年部门年终工作总结参考(四篇)
- 主题四 第1课 节气与我们的生活(教学设计)教科版五年级下册综合实践活动
评论
0/150
提交评论