版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省黄山市万安中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设等差数列{an}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>0参考答案:C【考点】82:数列的函数特性.【分析】由于数列{2}为递减数列,可得=<1,解出即可.【解答】解:∵等差数列{an}的公差为d,∴an+1﹣an=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.2.棱长都是的三棱锥的表面积为(
).A.2 B. C.3 D.4参考答案:B略3.(5分)设a=60.5,b=0.56,c=log0.56,则() A. c<b<a B. c<a<b C. b<a<c D. b<c<a参考答案:A考点: 对数值大小的比较.专题: 函数的性质及应用.分析: 利用指数函数与对数函数的单调性即可得出.解答: ∵a=60.5>1,0<b=0.56<1,c=log0.56<0,∴c<b<a.故选:A.点评: 本题考查了指数函数与对数函数的单调性,属于基础题.4.如果幂函数的图象不过原点,则的取值范围是(
)A.
B.或
C.或
D.参考答案:B5.设集合若,则实数a的值(
)(A)1
(B)0
(C)-1
(D)-1或0参考答案:C略6.函数的零点所在区间是
(
)(A)()
(B)()
(C)(,1)
(D)(1,2)参考答案:C略7.已知直线l⊥平面α,直线m?平面β,有下面四个命题:(1)α∥β?l⊥m,(2)α⊥β?l∥m,(3)l∥m?α⊥β,(4)l⊥m?α∥β,其中正确命题是()A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)参考答案:B【考点】空间中直线与平面之间的位置关系.【分析】根据已知直线l⊥平面α,直线m?平面β,结合α∥β结合线面垂直的定义及判定,易判断(1)的真假;结合α⊥β,结合空间直线与直线关系的定义,我们易判断(2)的对错;结合l∥m,根据线面垂直的判定方法及面面平行的判定定理,易判断(3)的正误;再根据l⊥m结合空间两个平面之间的位置关系,易得到(4)的真假,进而得到答案.【解答】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m?平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l?平面β,又∵直线m?平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m?平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m?α,又∵直线m?平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.8..函数的图象是参考答案:C略9.把数列的所有项按照从大到小,左大右小的原则写成如右数表:第k行有个数。第t行的第s个数(从左数起)记为,则为(
)A.
B.
C.
D.
参考答案:C10.已知数列{an}满足,,则的最小值为(
)A.2 B. C.4 D.参考答案:D【分析】由,累加法求通项,再利用函数的单调性求出最小值.【详解】由,可得,,,再利用累加法可得,∴,,∵在上单调递增,n=1时,,n=2时,,故选D.【点睛】本题考查累加法求通项求数列的通项公式,考查函数的单调性,准确计算是关键,是中档题.二、填空题:本大题共7小题,每小题4分,共28分11.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是,则sin2θ﹣cos2θ的值等于.参考答案:﹣【考点】三角函数的化简求值.【专题】计算题.【分析】根据题意可知每个直角三角形的长直角边为cosθ,短直角边为sinθ,小正方形的边长为cosθ﹣sinθ,先利用小正方形的面积求得∴(cosθ﹣sinθ)2的值,根据θ为直角三角形中较小的锐角,判断出cosθ>sinθ
求得cosθ﹣sinθ的值,进而求得2cosθsinθ利用配方法求得(cosθ+sinθ)2的进而求得cosθ+sinθ,利用平方差公式把sin2θ﹣cos2θ展开后,把cosθ+sinθ和cosθ﹣sinθ的值代入即可求得答案.【解答】解:依题意可知拼图中的每个直角三角形的长直角边为cosθ,短直角边为sinθ,小正方形的边长为cosθ﹣sinθ,∵小正方形的面积是∴(cosθ﹣sinθ)2=又θ为直角三角形中较小的锐角,∴cosθ>sinθ
∴cosθ﹣sinθ=又∵(cosθ﹣sinθ)2=1﹣2sinθcosθ=∴2cosθsinθ=∴1+2sinθcosθ=即(cosθ+sinθ)2=∴cosθ+sinθ=∴sin2θ﹣cos2θ=(cosθ+sinθ)(sinθ﹣cosθ)=﹣故答案为﹣.【点评】本题主要考查了三角函数的化简求值,同角三角函数的基本关系.考查了学生综合分析推理和基本的运算能力.12.已知函数是偶函数,且,当时,,则的值为
;参考答案:13.两平行线间的距离是_
_。参考答案:试题分析:根据两平行线间的距离公式可知.考点:本题考查两平行线间的距离公式即.
14.直线和将以原点圆心,1为半径的圆分成长度相等的四段弧,则________.
参考答案:215.如图S为正三角形所在平面ABC外一点,且SA=SB=SC=AB,E、F分别为SC、AB中点,则异面直线EF与SA所成角为
.参考答案:16.______________________.参考答案:17.已知角的终边经过点,则的值为____________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.假设关于某种设备的使用年限和支出的维修费用(万元),有以下的统计资料:使用年限23456维修费用2.23.85.56.57.0若由资料知,对呈线性相关关系。试求(1)线性回归方程的确回归系数.
(2)估计使用年限为10年时,维修费用是多少?参考公式:回归直线方程:y=bx+a,参考答案:解:(1)
(2)当x=10时,y=1.23×10+0.08=12.38(万)答略略19.设集合,,;(1)求,;(2)若,求由实数为元素所构成的集合.参考答案:解:(1),,;……………………(6分)(2),当时,此时,符合题意;……………………(8分)
当时,,此时,,;解得:综上所述:实数为元素所构成的集合…………………(12分)
略20.如图,在平面四边形ABCD中,已知,,AB=6,在AB上取点E,使得,连接EC、ED,若,。(1)求的值;(2)求CD的长。参考答案:(1);(2)CD=7.试题分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.试题解析:(1)在中,据正弦定理,有.∵,,,∴.(2)由平面几何知识,可知,在中,∵,,∴.∴.在中,据余弦定理,有∴点睛:此题考查了正弦定理、余弦定理的应用,利用正弦、余弦定理可以很好得解决了三角形的边角关系,熟练掌握定理是解本题的关键.在中,涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.21.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台,上面是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱. 现需要对该零部件表面进行防腐处理,已知(单位:厘米),每平方厘米的加工处理费为元,需加工处理费多少元?
参考答案:因为四棱柱的底面是正方形,侧面是全等的矩形,所以….4因为四棱台的上、下底面均是正方形,侧面是全等的等腰梯形,所以于是该实心零部件的表面积为,故所需加工处理费为(元)
…….1222.已知函数f(x)=x+(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明f(x)在(0,1)上是减函数;(Ⅲ)函数f(x)在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).参考答案:证明:(I)函数为奇函数(II)设x1,x2∈(0,1)且x1<x2=∵0<x1<x2<1,∴x1x2<1,x1x2﹣1<0,∵x2>x1∴x2﹣x1>0.∴f(x2)﹣f(x1)<0,f(x2)<f(x1)因此函数f(x)在(0,1)上是减函数(III)f(x)在(﹣1,0)上是减函数.考点:奇偶性与单调性的综合.专题:常规题型.分析:(I)用函数奇偶性定义证明,要注意定义域.(II)先任取两个变量,且界定大小,再作差变形看符
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国学校家具行业发展现状及前景规划研究报告
- 2024-2030年中国婴儿洗护用品市场运行动态及前景趋势预测报告
- 2024-2030年中国女性洗液行业市场营销模式及发展前景预测报告
- 2024-2030年中国多型腔热流道管坯模具境外融资报告
- 2024年标准简易个人鱼塘承包合同模板版B版
- 梅河口康美职业技术学院《高级语言程序实践》2023-2024学年第一学期期末试卷
- 茂名职业技术学院《语文教学设计与实施》2023-2024学年第一学期期末试卷
- 微专题定量测定型实验突破策略-2024高考化学一轮考点击破
- 吕梁职业技术学院《生物学科专业导论》2023-2024学年第一学期期末试卷
- 2024年某科技公司与某航空公司关于机载娱乐系统的合同
- 心电监护技术
- 2024年华润电力投资有限公司招聘笔试参考题库含答案解析
- 垄断行为的定义与判断准则
- 模具开发FMEA失效模式分析
- 聂荣臻将军:中国人民解放军的奠基人之一
- 材料化学专业大学生职业生涯规划书
- 乳品加工工(中级)理论考试复习题库(含答案)
- 《教材循环利用》课件
- 学生思想政治工作工作证明材料
- 2023水性环氧树脂涂层钢筋
- 国开《Windows网络操作系统管理》形考任务2-配置本地帐户与活动目录域服务实训
评论
0/150
提交评论