




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰州市兴化城北中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若一个底面是正三角形的三棱柱的主视图如右图所示,其顶点都在一个球面上,则该球的表面积是(
)A.
B.C.
D.参考答案:C2.过点A(1,﹣1)、B(﹣1,1)且圆心在直线x+y﹣2=0上的圆的方程是()A.(x﹣3)2+(y+1)2=4 B.(x+3)2+(y﹣1)2=4 C.(x﹣1)2+(y﹣1)2=4 D.(x+1)2+(y+1)2=4参考答案:C【考点】圆的标准方程.【分析】先求AB的中垂线方程,它和直线x+y﹣2=0的交点是圆心坐标,再求半径,可得方程.【解答】解:圆心一定在AB的中垂线上,AB的中垂线方程是y=x,排除A,B选项;圆心在直线x+y﹣2=0上验证D选项,不成立.故选C.【点评】本题解答灵活,符合选择题的解法,本题考查了求圆的方程的方法.是基础题目.3.如图,在透明塑料制成的长方体ABCD﹣A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当E∈AA1时,AE+BF是定值.其中正确说法的是()A.②③④ B.①②④ C.①③④ D.①②③参考答案:C【考点】平行投影及平行投影作图法.【分析】①水的部分始终呈棱柱状;从棱柱的特征平面判断即可;②水面四边形EFGH的面积不改变;可以通过EF的变化EH不变判断正误;③棱A1D1始终与水面EFGH平行;利用直线与平面平行的判断定理,推出结论;④当E∈AA1时,AE+BF是定值.通过水的体积判断即可.【解答】解:①水的部分始终呈棱柱状;从棱柱的特征平面AA1B1B平行平面CC1D1D即可判断①正确;②水面四边形EFGH的面积不改变;EF是可以变化的EH不变的,所以面积是改变的,②是不正确的;③棱A1D1始终与水面EFGH平行;由直线与平面平行的判断定理,可知A1D1∥EH,所以结论正确;④当E∈AA1时,AE+BF是定值.水的体积是定值,高不变,所以底面面积不变,所以正确.故选:C.【点评】本题是基础题,考查棱柱的结构特征,直线与平面平行的判断,棱柱的体积等知识,考查计算能力,逻辑推理能力.4.设,则()A.
B.
C.
D.参考答案:C5.下列各组中的两个函数是同一函数的有()个(1)y=和y=x﹣5
(2)y=和y=(3)y=x和y=(4)y=x和y=(5)y=t2+2t﹣5和y=x2+2x﹣5.A.1 B.2 C.3 D.4参考答案:B【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.【解答】解:对于(1)y=定义域为{x∈R|x≠﹣3},而y=x﹣5的定义域为R,定义域不同,∴不是同一函数;对于(2)y=定义域为{x|1≤x},而y=定义域为{x|x≥1或x≤﹣1},定义域不同,∴不是同一函数;对于(3)y=x的定义域为R,而y==|x|定义域为R,但对应关系不相同,∴不是同一函数;对于(4)y=x的定义域为R,y==x,定义域为R,它们的定义域相同,对应关系也相同,∴是同一函数;对于(5)y=t2+2t﹣5定义域为R,y=x2+2x﹣5的定义域为R.它们的定义域相同,对应关系也相同,∴是同一函数;故选B.6.函数f(x)=2x+3x的零点所在的区间是
()A.(-2,-1)
B.(0,1)
C.(-1,0)
D.(1,2)参考答案:C略7.中心角为60°的扇形,它的弧长为2,则它的内切圆半径为
(
)
A.2
B.
C.1
D.
参考答案:A8.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为(
)A. B. C. D.参考答案:A设圆的半径为,则圆的面积,正六边形的面积,所以向圆中随机投掷一个点,该点落在正六边形内的概率,故选A.9.已知函数是偶函数,那么()A.既是奇函数又是偶函数
B.是偶函数C.是奇函数
D.是非奇非偶函数参考答案:C10.下列点不是函数的图象的一个对称中心的是(
)A. B. C. D.参考答案:B分析】根据正切函数的图象的对称性,得出结论.【详解】解:对于函数f(x)=tan(2x)的图象,令2x,求得xπ,k∈Z,可得该函数的图象的对称中心为(π,0),k∈Z.结合所给的选项,A、C、D都满足,故选:B.【点睛】本题主要考查正切函数的图象的对称性,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设,则的最大值为
.参考答案:1由,解得或,,函数图象如图所示,当时取得最大值1.故答案为1.
12.已知,,则tanα的值为.参考答案:【考点】三角函数中的恒等变换应用.【分析】根据诱导公式,可得cosα=,进而利用同角三角函数的基本关系公式,可得答案.【解答】解:∵,∴cosα=,∵,∴sinα=﹣=﹣,∴tanα==,故答案为:.【点评】本题考查的知识点是诱导公式,同角三角函数的基本关系公式,难度基础.13.已知向量满足.若,则m=_______;______.参考答案:-4
【分析】先根据求出m的值,再求得解.【详解】因为,所以(1)×m4=0,所以m=4.所以.故答案为:
【点睛】本题主要考查向量平行的坐标表示和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知集合,且,则=
参考答案:1
略15.若函数是定义在上的奇函数,且对任意的都有,若,则_______;
参考答案:略16.设
,其中
为实数,
,
,
,若
,则
参考答案:517.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.参考答案:试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比。已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图)(1)分别写出两种产品的收益与投资的函数关系。(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?参考答案:(1)
(2)当,即万元时,收益最大,万元解析:解(1)设,
……2分所以,
即
……5分(2)设投资债券类产品万元,则股票类投资为()万元依题意得:
……10分
令
则所以当,即万元时,收益最大,万元
……14分19.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.参考答案:【考点】直线的截距式方程.【专题】计算题.【分析】设直线l的横截距为a,则纵截距为(6﹣a),写出直线l的截距式方程,把(1,2)代入即可求出a的值,把a的值代入直线l的方程中,经过检验得到满足题意的直线l的方程.【解答】解:设直线l的横截距为a,由题意可得纵截距为6﹣a,∴直线l的方程为,∵点(1,2)在直线l上,∴,解得:a1=2,a2=3,当a=2时,直线的方程为2x+y﹣4=0,直线经过第一、二、四象限;当a=3时,直线的方程为x+y﹣3=0,直线经过第一、二、四象限.综上所述,所求直线方程为2x+y﹣4=0或x+y﹣3=0.【点评】此题考查学生会利用待定系数法求直线的截距式方程,是一道基础题.学生做题时应注意求得的a值有两个都满足题意.20.(12分)如图,已知直线l1:4x+y=0,直线l2:x+y﹣1=0以及l2上一点P(3,﹣2),求圆心在l1上且与直线l2相切于点P的圆的方程.参考答案:考点: 圆的标准方程.专题: 直线与圆.分析: 法一:利用待定系数法即可求圆C的方程;法二:根据直线和圆相切的等价条件,联立方程组求出圆心和半径即可.解答: 解:法一:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∵圆C与直线l:x+y﹣1=0相切于点P(3,﹣2),且圆心在直线4x+y=0上,∴满足,解得a=1,b=4,r=,则圆的标准方程为(x﹣1)2+(y﹣4)2=8.法二:过切点且与x+y﹣1=0垂直的直线方程为y+2=x﹣3,即y=x﹣5与4x+y=0联立求得圆心为(1,﹣4),则半径r==,则圆的标准方程为(x﹣1)2+(y﹣4)2=8.点评: 本题主要考查圆的标准方程的求解,以及直线和圆相切的应用,利用直线和圆的位置关系求出圆心和半径是解决本题的关键.21.(本小题满分16分)已知函数在区间上的值域为
(Ⅰ)求的值;
(Ⅱ)若关于的函数在区间上为单调函数,求实数的取值范围.参考答案:解:(Ⅰ)∵a>0,∴所以抛物线开口向上且对称轴为x=1.∴函数f(x)在[2,3]上单调递增.由条件得,即,解得a=1,b=0.………6分(Ⅱ)由(Ⅰ)知a=1,b=0.∴f(x)=x2-2x+2,从而g(x)=x2-(m+3)x+2.
………8分
若g(x)在[2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025隧道衬砌施工合同
- 2025合同解除终止劳动合同证明书
- 2025【IT综合服务合同】综合信息服务合同
- 2025年单位货物运输合同协议范本模板
- 2024年中国邮政集团有限公司黑龙江省分公司招聘笔试真题
- 2024年六盘水市市属事业单位考试真题
- 2024年乐昌市市属事业单位考试真题
- 2024年安庆阳光职业技术学校专任教师招聘真题
- 洗沙加工合同范本
- 鞋业贸易加工合同范本
- 小学生校园安全教育
- 保洁施工方案新
- 2024年至2025年湖南省娄底市公开招聘警务辅助人员辅警结构化面试高频必考题库一卷含答案
- (沪粤版)八年级物理下册《7.4同一直线上二力的合成》同步测试题带答案
- 三人合伙开店合同范本
- 2025年湖北省八市高三(3月)联考英语试卷(含答案详解)
- 2024 年四川省公务员考试申论、行测【行政执法、省直、综合管理岗、A类、申论】5套 真题及答案
- 2025年南阳科技职业学院单招职业倾向性测试题库带答案
- 15 青春之光 公开课一等奖创新教学设计
- 2025年高考地理高分答题攻略
- 2024年全国中学生数学奥林匹克竞赛内蒙古赛区初赛试卷(解析版)
评论
0/150
提交评论