云南省昆明市云南农业大学附属中学高三数学理上学期摸底试题含解析_第1页
云南省昆明市云南农业大学附属中学高三数学理上学期摸底试题含解析_第2页
云南省昆明市云南农业大学附属中学高三数学理上学期摸底试题含解析_第3页
云南省昆明市云南农业大学附属中学高三数学理上学期摸底试题含解析_第4页
云南省昆明市云南农业大学附属中学高三数学理上学期摸底试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市云南农业大学附属中学高三数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数有两个极值点,则实数的取值范围是

)A. B. C.

D.参考答案:B,,有两个极值点,有两个根,设,则关于的方程有两个正根,可得,实数的取值范围是,故选B.

2.若对于任意的正实数x,y都有成立,则实数m的取值范围为()A.

B.

C.(0,1)

D.参考答案:D由,可得,设,则可设,则,所以,所以单调递减,又,所以在单调递增,在上单调递减,所以,所以,所以,故选D.

3.已知f(x)在R上是偶函数,f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(11)=()A.2 B.9 C.﹣98 D.﹣2参考答案:A【分析】先由f(x+4)=f(x),知函数f(x)为周期为4的函数,故f(11)=f(﹣1),再由f(x)是R上的偶函数,知f(﹣1)=f(1),最后代入已知解析式求值即可.【解答】解:∵f(x+4)=f(x),∴f(11)=f(﹣1+4+4+4)=f(﹣1),∵f(x)是R上的偶函数,∴f(﹣1)=f(1),∴f(11)=f(1),∵x∈(0,2)时,f(x)=2x2,∴f(11)=f(1)=2×12=2,故选:A.【点评】本题考查了函数的周期性定义及其应用,函数的奇偶性应用,转化化归的思想.4.定义方程的实数根x0叫做函数的“新驻点”,如果函数,,()的“新驻点”分别为,,,那么,,的大小关系是

A.>>

B.>>

C.>>

D.>>参考答案:D5.设,则“”是“直线与直线平行”的A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件参考答案:A若,则,解得或。所以是充分不必要条件,选A.6.下列函数中既是奇函数,又在区间[-1,1]上单调递减的函数是A.

B.

C.

D.参考答案:D7.设是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是(

)A.

B.

C.

D.参考答案:A略8.对于函数与和区间D,如果存在,使,则称是函数与在区间D上的“友好点”.现给出两个函数:①,;②,;③,;④,,则在区间上的存在唯一“友好点”的是(

A.①②

B.③④

C.②③

D.①④参考答案:D略9.已知x与y之间的几组数据如下表:

假设根据上表数据所得线性回归直线方程为.若某同学根据上表中的最后两组数据(5,2)和(6,0)求得的直线方程为,则以下结论正确的是(A)

(B)(C)

(D)参考答案:略10.已知是双曲线的右焦点,点分别在其两条渐近线上,且满足,(为坐标原点),则该双曲线的离心率为(A)

(B)

(C)

(D)参考答案:A【知识点】双曲线及其几何性质H6由题意,kOA=-,∵,∴kAB=,

∴直线AB的方程为y=(x-c),与y=±x联立可得y=-或y=,

∵,∴=2,∴c2=2(2a2-c2),∴e==.【思路点拨】先求出直线AB的方程与渐进线方程联立,可得A,B的纵坐标,利用,可得a,c的关系,即可求出双曲线的离心率.二、填空题:本大题共7小题,每小题4分,共28分11.在极坐标系中,定点,点在直线上运动,则线段的最短长度为_____________.参考答案:略12.若,则实数m的取值范围是___________.参考答案:略13.如图,平面内有三个向量、、,其中与的夹角为120°,与的夹角为30°,且==1,=.若=的值为

.

参考答案:答案:解析:过C作与的平行线与它们的延长线相交,可得平行四边形,由角BOC=90°角AOC=30°,=得平行四边形的边长为和,+=14.若满足,则目标函数取最大值时

。参考答案:415.已知集合,,则

.参考答案:.16.某公司的组织结构图如下图所示,则信息部被______直接领导.参考答案:总工程师【分析】根据组织结构图的定义及其要素间的从属关系可得结论.【详解】根据给定的组织结构图,可知信息部从属于总工程师,所以填总工程师.故答案为:总工程师.【点睛】本题主要考查对结构图的理解与应用,组织结构图是将组织分成若干部分,并且标明各部分之间可能存在的各种关系,属于简单题.17.已知角的终边经过点,且,则的值为

.参考答案:10三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)

如图,平面四边形的四个顶点都在球的表面上, 为球的直径,为球面上一点,且平面 ,,点为的中点.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.参考答案:解:(1)证明:且,…………2分 则平行且等于,即四边形为平行四边形,所以.

…………6分 (2)以为原点,方向为轴,以平面内过点且垂直于方向为轴 以方向为轴,建立如图所示坐标系. 则,,, ,,…………8分 由,, 可求得平面PBC的法向量为 由,, 可求得平面PAD的法向量为 则, 因此平面与平面所成锐二面角的余弦值为.

…………13分19.已知函数f(x)=x2﹣x|x﹣a|﹣3a,a>0.(1)若a=1,求f(x)的单调区间;(2)求函数在x∈[0,3]上的最值;(3)当a∈(0,3)时,若函数f(x)恰有两个不同的零点x1,x2,求的取值范围.参考答案:【考点】二次函数的性质.【分析】(1)根据二次函数以及一次函数的性质求出函数的单调区间即可;(2)通过讨论a的范围求出函数的最小值和最大值即可;(3)求出f(x)的根,求的表达式,得到其范围即可.【解答】解:(1)x≤1时,函数f(x)的对称轴是x=,开口向上,故f(x)在上单调递减,在上单调递增.(2),当0<a≤3时,f(x)=2x2﹣ax﹣3a的对称轴是x=<1,∴f(x)在[0,)递减,在(,3]递增,而f(0)=﹣3a<f(3)=0,∴f(x)的最小值,最大值f(3);当3<a<6时,对称轴x=,1<<3,故f(x)在[0,)递减,在(,3]递增,∴f(x)的最小,最大值f(3),当6≤a<12时,最小值,最大值f(0)当a≥12时,最小值f(3),最大值f(0)(3)当0<a<3时,令f(x)=0,可得,(因为f(a)=a2﹣3a<0,所以x3>a舍去)所以,在0<a<3上是减函数,所以.20.(本小题满分12分)为了解学生家长对师大附中实施现代教育教改实验的建设性意见,学校决定用分层抽样的方法,从高中三个年级的家长委员会中共抽取6人进行座谈.已知高一、高二、高三年级的家长蠢员会分别有54人、18人、36人.(I)求从三个年级的家长委员会中应分别抽取的家长人数;

(II)若从已经抽取的6人中再随机选取3人加入教改课题组,求这3人中至少有一人是高三学生家长的概率.

参考答案:21.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|2x-4|+|x+1|,(1)解不等式f(x)≤9;(2)若不等式f(x)<2x+a的解集为A,B={x|x2-3x<0},且满足BA,求实数a的取值范围.参考答案:解:(1)可化为,故或或,即或或,所以不等式的解集为.(2)易知,所以,又在恒成立,在恒成立,在恒成立,故.

22.已知p:方程x2+mx+1=0有两个不等的负实根,q:?x∈(1,]使f(x)=1n(mx2+2x﹣2)有意义.若p∨q为真,p∧q为假,求实数m的取值范围.参考答案:【考点】复合命题的真假.【专题】简易逻辑.【分析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案.【解答】解:由题意p,q中有且仅有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论