版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄阳市三十三中市级名校2023-2024学年中考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙2.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B.1 C. D.3.两个有理数的和为零,则这两个数一定是()A.都是零 B.至少有一个是零C.一个是正数,一个是负数 D.互为相反数4.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.55.下列各数中,为无理数的是()A. B. C. D.6.在平面直角坐标系中,点(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一个数和它的倒数相等,则这个数是()A.1 B.0 C.±1 D.±1和08.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x D.4my-2=2(2my-1)9.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3 B.2 C.5 D.10.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则___________.12.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.13.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.14.若反比例函数的图象位于第二、四象限,则的取值范围是__.15.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A. B. C. D.17.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.三、解答题(共7小题,满分69分)18.(10分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF19.(5分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.20.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.21.(10分)观察下列各式:①②③由此归纳出一般规律__________.22.(10分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.23.(12分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知:,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为(点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.24.(14分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、A【解析】∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,∴从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.3、D【解析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.4、C【解析】【分析】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案.【详解】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,根据方差公式:=3,则==4×=4×3=12,故选C.【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.5、D【解析】A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,故选D.6、C【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C7、C【解析】
根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.
故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8、D【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.9、B【解析】
以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK=.故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.10、B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、.【解析】
利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a1=4a2=,a3=,a4=,…数列以4,−三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故答案为:.【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.12、1【解析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.13、(24001,0)【解析】分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标详解:∵直线l:∴∵NM⊥x轴,M1N⊥直线l,∴∴同理,…,所以,点的坐标为点M2000的坐标为(24001,0).故答案为:(24001,0).点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.14、k>1【解析】
根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.【详解】∵反比例函数y=的图象在第二、四象限,∴1-k<0,∴k>1.故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.15、8【解析】
根据题意作出图形即可得出答案,【详解】如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.16、A【解析】
该班男生有x人,女生有y人.根据题意得:,故选D.考点:由实际问题抽象出二元一次方程组.17、【解析】
根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【详解】画树状图得:
∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),
∴点(a,b)在图象上的概率为.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.三、解答题(共7小题,满分69分)18、详见解析【解析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他证法也可)19、(1)详见解析;(2)①67.5°;②90°.【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.20、(1)详见解析;(2)1.【解析】
(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.21、xn+1-1【解析】试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.试题解析:(x﹣1)(++…x+1)=.故答案为.考点:平方差公式.22、(1)85,85,80;(2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.【解析】
分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解:(1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,∵,∴初中代表队选手成绩比较稳定.【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.23、(1);(2);(3)或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 血液学检验试题+答案
- 心血管内科测试题含答案
- 建设工程安全生产管理测试题含答案
- 会展产品合同范例
- 借用模具合同范例
- 2025年重庆货运从业资格证模拟考试0题答案解析
- 会投资合同范例
- 挖机租赁合同范例全部
- 房屋烫顶合同范例
- 新车销售购车合同范例
- GB/T 5585.1-2005电工用铜、铝及其合金母线第1部分:铜和铜合金母线
- GB/T 38808-2020建筑结构用波纹腹板型钢
- GB/T 22292-2008茉莉花茶
- 《沙盘游戏与大学生心理治疗》课程教学大纲
- 2022年伊犁哈萨克自治州林业系统事业单位招聘笔试试题及答案解析
- 部编版五年级上册语文期末复习知识点总结
- 中医内科学肥胖课件
- 让财务助推业务-业财融合课件
- 华为绩效与激励:价值创造、价值评价、价值分配PPT版
- 航天航空与国防行业“铸剑”系列深度报告(五):军品定价机制改革~激励与补偿的艺术
- 国开公共政策概论形考任务4试题及答案
评论
0/150
提交评论