柔性制造实验_第1页
柔性制造实验_第2页
柔性制造实验_第3页
柔性制造实验_第4页
柔性制造实验_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课程编号:柔性制造系统研究生大实验实验报告姓名:学号:专业:南京航空航天大学机电学院实验一实验目的了解RV-M1五自由度机器人的手动操作。编程实现机器人通过预定点位的操作。编程实现上位机控制机器人的运行。实验设备五自由度机器人RV-M1 1台圆柱形工件4个机器手抓取零件程序熟悉机械手臂的工作方法和控制操作系统,练习用程序控制机械手臂运动程序如下:SP5MO100M0101//机器手抓取第一个零件GCMO103MO104MO104GOMO106MO100M0107//机器手抓取第二个零件MO108GCMO109MO110MO111MO112GOMO113MO100MO114//机器手抓取第三个零件MO115GCMO116MO117MO118GOMO119MO100MO120//机器手抓取第四个零件MO121GCMO122MO123MO124GOMO125MO100//机械手复位ED//程序结束以上各个点的坐标XYZPRPD100138.149.1399.0-79.0-4.9PD101412.0208.8359.011.3-3.0PD102448.1227.0195.3-2.2-4.0PD103425.7215.7435.121.0-4.0PD104479.5-111.3295.77.4-4.0PD105466.9-108.3206.31.1-4.0PD106477.6-100.0414.920.6-7.7PD107304.0312.7301.7-5.0-1.5PD108357.7368.0195.52.2-1.5PD109309.1318.0547.738.1-1.5PD110-508.5111.1168.01.1-5.9PD111-498.8109.099.06.7-1.5PD112-497.1119.194.31.2-5.3PD113-431.3103.4631.858.8-3.0PD114364.3407.3405.014.9-2.0PD115360.2402.7178.9-3.7-2.0PD116307.8344.1588.013.5-0.8PD117-349.8239.2588.013.5-0.8PD118-411.9222.9100.63.10.1PD119-488.3220.9553.542.70.1PD120456.7301.6368.68.4-5.7PD121447.4295.7188.2-2.2-5.7PD122367.1242.5618.220.7-5.7PD123-365.9360.4475.33.6-5.7PD124-320.4337.396.2-0.9-5.7PD125-335.9353.6499.614.3-5.7实验二实验目的:用机器人抓取一下四种零件白色金属零件黑色金属零件白色非金属零件黑色非金属零件物料传输过来四种不同的零件,利用感应式传感器和光电式传感器分别检测,然后放在不同的位置。实验设备五自由度机器人RV-M1 1台传动链1条白色金属零件1个黑色金属零件1个白色非金属零件1个黑色非金属零件1个传送物料是机器人在工业中的重要应用,在本训练工程中,要求使用机器人编程语言中的一些特殊的命令,实现一个简单的工作传送系统。这一过程分两步:首先,设计机械手臂的动作,其次,编写程序控制机械手臂使机械手臂自动完成对原料的分拣。设计机械手臂的动作由于机械手臂的动作是关于点对点之间的动作,对过程没有记忆,因此只要确定了机械手臂每一个动作的起点和终点,机械手臂就可以完成预定的动作。同时,考虑到机械手臂的动作尽量美观简单又流畅,且不会影响到机械手臂正常的工作,所以对机器人的动作要进行分解。设计机械手臂动作的第一步就是要确定机器人每一个动作的起点和终点的坐标。在本实验中,机械手臂要完成的动作主要包括:将原料托盘中标有1、2、3、4标号的四个原料块按顺序分拣到检测台上,四个原料块分别是白色金属、黑色金属、白色非金属和黑色非金属,而且次序不确定。经传感器检测之后,传感器检测后,根据检测结果,机器人要将四个原料块放在托盘白色金属、黑色金属、白色非金属和黑色非金属四种原料的对应位置上。示意图如下。机械臂工作示意图机械臂工作流程图图工作程序如下ID//检查工作台是否有零件NE3,110//物料正被检测TI10GT100SP6//调用子程序完成成四个不同工位MO1,0抓取工件,经工作台传感器检测后GS700在分别放置在另四个指定位置的动作TI10GS600GS800TI10GS600GS900TI10GS600GS1000TI10GS600GT100EDMO8,O//一号位抓取动作子程序MO7,CMO6,CMO10,CMO11,CMO12,CMO13,OMO14,OMO15,ORTMO8,O//二号位抓取动作子程序/MO7,C/MO6,CMO10,CMO19,CMO20,CMO21,OMO22,OMO15,ORTMO8,OMO7,C//三号位抓取动作子程序MO6,CMO10,CMO26,CMO27,CMO28,OMO29,OMO15,ORTMO8,O//四号位抓取动作子程序MO7,CMO6,CMO10,CMO33,CMO34,CMO35,OMO36,OMO15,ORTTI10//工作台检测动作子程序,ID用以判断零件的材质及其NE0,605放置的位置GS200GT613NE1,608GS300GT613NE2,611GS400GT613NE3,600GS500RTMO2,O//一号位放置动作子程序MO3,OMO4,CMO5,CMO6,CMO7,CMO8,OMO9,ORTMO1,O//二号位放置动作子程序MO16,OMO17,OMO18,CMO5,CMO6,CMO7,CMO8,OMO9,ORTMO1,O//三号位放置动作子程序MO23,OMO24,OMO25,CMO5,CMO6,CMO7,CMO8,OMO9,ORTMO1,O//四号位放置动作子程序MO30,OMO31,OMO32,CMO5,CMO6,CMO7,CMO8,OMO9,ORT实验三实验目的了解数控车床、铣床的根本操作了解CAD、CAM到数控加工的一般过程自行设计零件完成从设计到加工的流程车床实验设备圆柱形毛坯 1个仿真软件 斯沃数控仿真软件CAD设计环境 UG7.0CAM环境 UG7.0在本次实验中需要练习用数控机床完成对一个典型零件的加工。原料块为一个长140,直径为40的金属短棒,零件的外形自行设计,在这里我设计一个手柄形状的零件,要求加工零件刀具要走的轨迹线要包括直线、斜线、圆弧。下列图1为在UG7.0中的造型图1加工零件的几何造型主要任务是在UG7.0里面造型,然后根据造型确定加工路线,再利用UG7.0里面的后处理功能生成数控加工的代码,把NC代码导入斯沃数控加工软件里面然后进行模拟加工。UG7.0里面的三维造型如图2图二UG7.0里的三维造型UG7.0里的刀具轨迹如图3图三刀具加工路径在三维造型软件UG7.0里面设置加工的机床选车床MACH01,选择适宜的刀具,主轴速度1000,进给量1.5mm,刀具进给100。所有设置完成后可以通过操作按钮来演示轨迹加工,如图四图四轨迹演示操作再通过图五,图六操作生成数控加工程序图五数控程序生成操作1图六数控程序生成操作2生成的一局部NC加工代码如下:O1011N0010M06N0020G50X0.0Z0.0N0030T0101N0040G97S0M03N0050G94G00X.9449Z.2362N0060X.8661N0070Z.126N0080X.7677N0090G92S0N0100G96M03N0110G95G01Z.1181F.004N0120Z-2.7717N0130Z-2.7795F.0394N0140G94G00X.8071N0150Z.126N0160X.748N0170G95G01Z.1181F.004N0180Z-2.7717N0190Z-2.7795F.0394N0200G94G00X.7874N0210Z.126N0220X.7283N0230G95G01Z.1181F.004N0240Z-2.7717N0250Z-2.7795F.0394N0260G94G00X.7677N0270Z.126N0280X.7087N0290G95G01Z.1181F.004N0300Z-2.7717N0310Z-2.7795F.0394N0320G94G00X.748N0330Z.126N0340X.689N0350G95G01Z.1181F.004N0360Z-2.7717N0370Z-2.7795F.0394N0380G94G00X.7283N0390Z.126N0400X.6693N0410G95G01Z.1181F.004N0420Z-1.4914N0430G03X.6888Z-1.5587I-.1065K-.0673N0440X.6693Z-1.626I-.126K0.0N0450G01Z-2.7717N0460Z-2.7795F.0394N0470G94G00X.6772N0480Z-1.626N0490G95G01X.6693F.004N0500G03X.6612Z-1.6374I-.1065K.0673N0510G02X.6496Z-1.6521I.9163K-.7327N0520G01Z-2.7717N0530Z-2.7795F.0394N0540G94G00X.689N0550Z-1.6521N0560X.6575N0570G94G00X.8661N0580Z.2362N0590M02把NC代码导入斯沃数控仿真软件进行模拟加工,利用FANUCOiT数控车床进行模拟加工。加工零件图如图七:图七数控仿真软件加工出来的零件铣床实验设备1.方形毛坯 1个2.仿真软件 斯沃数控仿真软件3.CAD设计环境 UG7.04.CAM环境 UG7.0在本次实验中需要练习用数控机床完成对一个典型零件的加工。原料块为一个长530,宽为240,高为160的金属方块,零件的外形自行设计,在这里设计一个轿车盖形状的零件,要求加工零件刀具要走的轨迹线要包括直线、斜线、圆弧。主要任务是在UG7.0里面造型,然后根据造型确定加工路线,再利用UG7.0里面的后处理功能生成数控加工的代码,把NC代码导入斯沃数控加工软件里面然后进行模拟加工。造型如图八图八UG7.0里的三维造型在刀具轨迹生成时为了简化,只加工了上外表。UG7.0里的刀具轨迹如图九图九刀具加工路径在三维造型软件UG7.0里面设置加工的机床选车床MACH01,选择适宜的刀具,主轴速度800,进给量3mm,刀具进给200。所有设置完成后可以通过操作按钮来演示轨迹加工,如图十图十轨迹演示操作再通过图十一,图十二操作生成数控加工程序图十一数控程序生成操作1图十二数控程序生成操作2生成的一局部NC加工代码如下:O1011N0010M06N0020G91G28Z0.0N0030T01N0040G0G90X45.1775Y17.844A0.0B0.0S0M03N0050G43Z76.3445H00N0060Z75.4413N0070G1Z75.3231F9.8M08N0080X46.0485Y17.6547N0090X45.9401Y16.6764N0100G3X45.9396Y-16.6727I150.5956J-16.6767N0110G1X46.0479Y-17.6509N0120X45.1759Y-17.8365N0130Z75.4413N0140G0Z76.3445N0150X47.6843Y-25.8661N0160Z75.4413N0170G1Z75.3231N0180X48.3873Y-25.5668N0190X48.2263Y-24.5958N0200G2X48.2264Y24.5961I148.3094J24.5955N0210G1X48.3875Y25.5671N0220X47.6829Y25.8619N0230Z75.4413N0240G0Z76.3445N0250X50.7272Y31.5423N0260Z75.4413N0270G1Z75.3231N0280X50.1772Y28.7416N0290G3X49.7841Y-26.6623I146.3585J-28.7419N0300G1X49.9554Y-27.5871N0310G3X50.1746Y-28.7355I136.6165J25.4762N0320G1X50.7204Y-31.5318N0330Z75.4413N0340G0Z76.3445N0350X52.4879Y-33.9429N0360Z75.4413N0370G1Z75.3231N0380X51.9816Y-31.6352N0390G2X51.1165Y-27.3706I134.5903J29.5243N0400G1X50.9462Y-26.4511N0410G2X51.9846Y31.6373I145.5895J26.4508N0420G1X52.4897Y33.9451N0430Z75.4413N0440G0Z76.3445N0450X54.1817Y35.8741N0460Z75.4413N0470G1Z75.3231N0480X53.7055Y33.871N0490G3X53.5135Y33.0521I130.7794J-31.0941N0500X52.1083Y-26.24I143.0222J-33.0524N0510G1X52.2776Y-27.1541N0520G3X53.7058Y-33.8714I134.2943J25.0432N0530G1X54.1855Y-35.8783N0540Z75.4413N0550G0Z76.3445N0560X55.807Y-37.3876N0570Z75.4413N0580G1Z75.3231N0590X55.3714Y-35.6855N0600G2X53.4387Y-26.9376I131.2005J33.5746N0610G1X53.2703Y-26.0289N0620G2X54.6643Y32.7862I143.2654J26.0286N0630X55.3675Y35.6806I129.8206J-30.0093N0640G1X55.8019Y37.385N0650Z75.4413N0660G0Z76.3445N0670X57.0715Y37.5254N0680Z75.4413N0690G1Z75.3231N0700X56.813Y36.5479N0710G3X55.815Y32.5202I127.6719J-33.771N0720X54.4324Y-25.8178I140.7207J-32.5205N0730G1X54.5997Y-26.721N0740G3X56.8169Y-36.5484I131.9722J24.6101N0750G1X57.0764Y-37.5261N0760Z75.4413N0770G0Z76.3445N0780X58.2936Y-37.4986N0790Z75.4413N0800G1Z75.3231N0810X58.0314Y-36.5192N0820G2X55.7608Y-26.5045I128.5405J34.4083N0830G1X55.5945Y-25.6066N0840G2X56.9658Y32.2543I140.9412J25.6063N0850X58.0272Y36.5182I127.5191J-29.4774N0860G1X58.2884Y37.4973N0870Z75.4413N0880G0Z76.3445N0890X59.5073Y37.4741N0900Z75.4413N0910G1Z75.3231N0920X59.2436Y36.4943N0930G3X58.1166Y31.9884I125.2413J-33.7174N0940X56.7566Y-25.3955I138.4191J-31.9887N0950G1X56.9219Y-26.288N0960G3X59.2484Y-36.4965I129.65J24.1771N0970G1X59.513Y-37.4765N0980Z75.4413N0990G0Z76.3445N1000X60.734Y-37.4572N1010Z75.4413N1020G1Z75.3231N1030X60.4667Y-36.4765N1040G2X58.083Y-26.0715I126.1052J34.3656N1050G1X57.9186Y-25.1844N1060G2X59.2674Y31.7224I138.6171J25.1841N1070X60.4617Y36.4744I125.2175J-28.9455N1080G1X60.7281Y37.4549N1090Z75.4413N1100G0Z76.3445N1110X61.9503Y37.4378N1120Z75.4413N1130Z53.474N1140G0Z76.3445N1150M02思考题法兰克与西门子接口控制指令有哪些,怎么设置?I/O控制指令,采用RS-232C或RS422,采用计算机网络,新一代的CNC装置为了能连入到DNC、FMS中设置了可直接与网络连接的专用通讯微处理器接口,通过该接口可以把数控设备连接在工业局域网〔LAN〕中。网络通信协议大多采用ISO开放系统互联参考模型七层结构为根底的有关协议。专用网络:DATA-HIGHWAY〔DH〕、〔DH+〕MAP网和工业以太网:FANUC、Simens、AB等。现场总线〔FieldBus〕-结构简单、协议直观;-价格低廉、性能稳定;-实时性较高,抗干扰能力强,适用与工业现场通信。DeviceNET智能〔柔性〕制造系统,智能表达在什么地方?〔1〕能自动控制和管理零件的加工过程,包括制造质量的自动控制、故障的自动诊断和处理、制造信息的自动采集和处理;〔2〕通过简单的软件系统变更,便能制造出某一零件族的多种零件;〔3〕自动控制和管理物料〔包括工件与刀具〕的运输和存储过程;〔4〕能解决多机床下零件的混流加工,且无需增加额外费用〔5〕具有优化的调度管理功能,无需过多的人工介入,能做到无人加工。制造柔性是指一个制造设备或系统对生产需求变化的适应能力,通常制造柔性表达在以下几个方面:制造设备的柔性制造设备通过配备相应的刀具、量具、夹具、NC程序等,使得此设备具有制造给定零件族中任何零件的能力;〔这是一种固有的柔性,它与制造设备所具有的相关功能有关,如机附刀库的容量、控制的运动轴数等。〕加工柔性以不同加工工序和工艺加工一个零件的能力或在给定的一个工艺规划下以不同的加工路线实现零件的加工〔制造工作站间和加工功能间的互换和替代〕产品柔性能够经济、快速地转变生产产品的能力零件流动路线柔性当系统出现局部故障时,能重新选择零件加工路径,并继续进行加工的能力。英文原文Asmanufacturingcompaniesthroughouttheworld,moveeverincreasinglytowardstotallyautomatedproduction,sothedemandforsuitablyqualifiedengineersandtechniciansgrows.Inordertoassistsatisfythisdemand,thesystemsdivisionofdenfordtoolslimited;havedevelopedawidevarietyofcomputerintegratedandflexiblemanufacturingsystem,CIMandFMS.Theserangefrombasicmachinecellsthroughtoadvancedautomatedfactorylayouts.ThedenfordCIMcreatesafullyintegratedcomputercontrolledmanufacturingsystemwhichfollowstheproductionfromrawmaterialsstockholdingthroughmaterialtransfer,manufacturing,partsrecognition,inspection,toolfinishedpathstorage.Asthecompany’spreviousdevelopmentsintheautomatedmanufacturing,theCIMsystemismodularbydesignandcanbeenhancedstagebystagetosuitthecustomers’requirements.Tounderstandfullythenatureofthedenfordmodularconceptforcomputerintegratedmanufacturingit’snecessarytoexamineeachelementinisolation.Theautomaticstorageandretrievalsystem(ASRS),iscomprisedof2parallelpalletstorageapex,eachcontaining35palletlocations,5verticaland7horizontal.Thepalletsaremovedtotheirdesignatedpositionsbymeansofagantryloadingsystem.TheASRSisbaseduponthesystem’smostwidelyusedindustryandrepresentstheindustry’swarehousingfacilitiesofthemanufacturingprocess.Onasignalfromthehostcomputer,therobotcollectsapalletfromthestoresandplacesthisonanindexofaconveyingsystem.MaterialtransferwithintheCIMiscarriedoutbyanindexableconveyingsystem.Thepositioningofwhichisgovernedbyaseriesofgateswithelectronicmicroswitches.Oncethepalletarrivesatthecorrectposition,adjacenttotheCNClathe,thecomputergivessignaltotheorbitrobottoloadthebilletintothemachine.ForthisCIM,theCNClatheisthecycloneslantbedlathe,fittedwithdenford’slatestcontrolsystem.Hydraulictouch,8positioningheavydutytoolpostandpneumaticslidingguard.Thecycloneisdesignedtobuildthehighestspecification,incorporatingdenford’slatestcontrolpackage,whichemulatestheindustrystandardFanucprogrammingsystem.Withtheaddedbenefitsofadded3dtoolpathgraphicsandservodrives,themachine’sotherindustrialfeaturesincluderapidtraverseratesof5m/min,constantsurfacespeedcontrolandvariablespindlespeedsupto5000rpm,generatedfromthe3horsepoweredspindlemotor.Oncompletionoftheturningoperation,thepartlymachinedcomponentisremovedbytherobotandtransferredtotheCNCmachiningsystem.Onceagain,denford’slatestcontrolsystemisincorporatedwiththeCIMonthetrialVMCverticalmachiningcenter.ThetrialVMCisaflawstanding3axisCNCmachiningcenter,fittedwithahydraulicdeviceforworkholding,anda6stationautomatictoolchanger.Themachineboostsrapidtraverserateof5m/min,variablespindlespeedsofupto4kRPMfull3Dcolortoolpathgraphics,toolradiusplusandtoollengthcompensation.Inkeepingwiththemodularnatureofthesystem,bothtrialVMCandthecyclonecouldberemovedfromtheCIMinordertoteachtheprinciplesofindustrialmillingandturningintogreaterdepth.Oncompetitionofthefinalmachiningoperation,thefinishedcomponentisremovedfromthetrialVMCbytherobotandplacedbackontheconveysystemtobetransferredtothenextelementoftheCIM,namelyinspection.Inspectionisavitalelementofanyindustrialprocess.Itisusedtodetectcomponentswhichhavebeenincorrectlymanufactured,assembledorhaveincorrectorientationsforfurtherprocessing.InthisCIM,2typesofinspectionareillustrated,parts14recognitionandin-depthstatisticalcalibration.Thepartsrecognitioninspectioniscarriedoutbyusingalowcostintelligentcamera,whichissetuptoidentifyandmeasureeachcomponentasitstopsunderthelens.This100%piecebypieceinspectioncanbeperformedatanystageoftheproductionprocessandcanrelegatecostlywastagerates.Oncethishasbeencarriedout,thepalletistransferredtotheASRS.It’snowpossibleeithertostorethesefinishedcomponentstotheirdesignatedbaseortotransferthepallettothesecondinspectionstation.Thein-depthstatisticalcalibrationinspectioniscarriedoutbyaCNC3Dcoordinatemeasuringmachine(CMM).Theunitincorporatedagranitesurfacebasewithgraniteslidewaysandstripsandairbearingsonall3axes.Itcanbesetupwithacompletesetofmeasuringprobesandiscapableoffull3Dgeometrictolerantcalibrationoncircle,plane,point,line,cone,cylinderandspheremeasuringroutinetoanaccuracyof0.002millimeters.Oncethefinishedcomponentisplacedontheinspectionplate,it’spossibletocarryoutasbriefofasin-depthinspectionroutineasnecessary.Thedataobtainedbytheinspectionprocessisthentransferredtothesupervisorycomputer.Theinformationwhichthesupervisorysoftwarereceivedfromcoordinatemeasuringmachinewilldeterminethefinaldestinationofthefinishedcomponent.Aratorundersizedpartswillbeplacedinanappropriatesectioninthestorageretrievalsystemwhereastheoversizedpartswillbereturnedtotherawmaterialstoresforremachining.Becausethesystemistotallyacloseloop,itispossibletoincorporatetheoptiontoautomaticallytransferinspectiondatadirectlytothecontrolsofthemachines,wheretooloffsetscanbemendedtocorrectanyundersizeoroversizedmachining,whichmaybeeffectingthefinishedcomponent.Theproductioncycleisnowcomplete.However,theinteractionofthesevariousmanufacturingelementsisextremelycomplexandcanonlybeoperatedefficientlyifitiscontrolledcorrectly.TheresponsibilityofthisphaseoftheCIMsystemrestswiththecellcontrollersandthesupervisorCIMsoftware.ThedesignofthiselementoftheCIMhasbeenbasedona3levelhierarchy,fromthemachinetoolsattheshopflooratthelowestlevelthroughthecellcontrollersattheintermediateleveltothehostcomputerattheheadofthehierarchy.Thisconfigurationhasbeenchosenasitallowsthemosteffectivedelegationoftheresponsibilitiesfromthetopdownandguaranteesthecorrectfeedbackofrelevantinformationfromthebottomup.TheroleofthehostcomputeristosupervisetheCIM.Itdispatchesinstructionstothecellcontrollerstoinitiatetheindividualmanufacturingprocessesandreceivesinformationbackfromthemonthestatusofthesystem.Thehostiscomposedofanumberofsoftwaremodules,coveringdesignandanalysisoftheshopfloorlayout,processplanningandrealtimescheduling.ThecellcontrollersaredevicedriversresponsibleforthedirectcontrolofthevariousmachineswithintheCIM.Engineeringstudentsthroughouttheworldneednotonlythebasicknowledgeofthetheoreticalsideoftheautomatedmanufacturingbutalsoneedsomepracticalhandsonexperienceofthelatesttechnology.Withtheseinmind,thedenfordsystemdivisionhavedesignedtheCIM,whichisflexible,modularexpandable,lowcostandonewhichcanbeinterfacedwiththewiderangeofmachinetoolsandequipmentforothermanufacturers.Advancesbemadebydenfordinthefieldofcomputerintegratedmanufacturingtogetherwiththecompaniesbasicphilosophersoftotalcomputabilitymeansthatexistingandpotentialcustomersarelookforwardt

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论