![二次根式99866电子教案_第1页](http://file4.renrendoc.com/view3/M03/3C/35/wKhkFmY7ufGAApbpAAA0cJSLOpI287.jpg)
![二次根式99866电子教案_第2页](http://file4.renrendoc.com/view3/M03/3C/35/wKhkFmY7ufGAApbpAAA0cJSLOpI2872.jpg)
![二次根式99866电子教案_第3页](http://file4.renrendoc.com/view3/M03/3C/35/wKhkFmY7ufGAApbpAAA0cJSLOpI2873.jpg)
![二次根式99866电子教案_第4页](http://file4.renrendoc.com/view3/M03/3C/35/wKhkFmY7ufGAApbpAAA0cJSLOpI2874.jpg)
![二次根式99866电子教案_第5页](http://file4.renrendoc.com/view3/M03/3C/35/wKhkFmY7ufGAApbpAAA0cJSLOpI2875.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次根式99866
精品文档
第二十一章二次根式
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次
根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第
十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也
是今后学习其他数学知识的基础.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解&(a20)是一个非负数,(G)2=a(a20),
-a.(a20).
(3)掌握&*y/b=y[ab(a20,b20),4ab-4a•4b;
4a_[a[a_\/a
(a20,b>0),(a20,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加
减.
2.过程与方法
收集于网络,如有侵权请联系管理员删除
精品文档
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出
概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些
重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘
(除)法规定,•并运用规定进行计算.
(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等
式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,・
给出最简二次根式的概念.利用最简二次根式的概念,来对相同的
二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的
科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,
发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式G(a20)的内涵.G(a20)是一个非负数;
(G)2=a(a20);77=a(a20)•及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
收集于网络,如有侵权请联系管理员删除
精品文档
1.对&(a20)是一个非负数的理解;对等式(&)2=a(a2
0)及V7=a(a20)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突
破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能
力,•培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1二次根式3课时
21.2二次根式的乘法3课时
21.3二次根式的加减3课时
教学活动、习题课、小结2课时
21.1二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用G(a20)的意义解答具体题目.
收集于网络,如有侵权请联系管理员删除
精品文档
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如&(a20)的式子叫做二次根式的概念;
2.难点与关键:利用“&(aNO)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=3,那么它的图象在第一象限横、•纵
X
坐标相等的点的坐标是.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,Z
C=90°,那么AB边的长是.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、
8,那么甲这次射击的方差是S2,那么S=.
老师点评:
问题1:横、纵坐标相等,即*=丫,所以X2=3.因为点在第一
象限,所以X=百,所以所求点的坐标(出,石).
问题2:由勾股定理得AB=&6
问题3:由方差的概念得S=、E.
收集于网络,如有侵权请联系管理员删除
精品文档
二、探索新知
很明显6、M、g都是一些正数的算术平方根.像这样一些
正数的算术平方根的式子,我们就把它称二次根式.因此,一般
地,我们把形如G(a20)•的式子叫做二次根式,称为二
次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,G有意义吗?
老师点评:(略)
例L下列式子,哪些是二次根式,哪些不是二次根式:虎、
冷、L、G(x〉0)、面、蚯、-0、」一、Jx+y(x20,y・2
xx+y
0).
分析:二次根式应满足两个条件:第一,有二次根号“一”;第
二,被开方数是正数或0.
解:二次根式有:0、\[x(x>0)、C、-&、yjx+y(xNO,y
20);不是二次根式的有:5、二、向」一.
xx+y
例2.当x是多少时,^/§m在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,
所以3x-120,・J3x-1才能有意义.
收集于网络,如有侵权请联系管理员删除
精品文档
解:由3x-120,得:x2工
3
当x2工时,斥1在实数范围内有意义.
3
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,岳石+二-在实数范围内有意义?
X+1
分析:要使后有+」一在实数范围内有意义,必须同时满足
X+1
与中的20和」一中的X+1W0.
X+1
解:依题意,得12%+3对
%+1w0
由①得:
2
由②得:xW-1
当且xW-1时,后石+」—在实数范围内有意义.
2x+1
例4⑴已知+F工+5,求上的值.(答案:2)
y
(2)若&ZT+M万=0,求a2004+b2004的值.(答案:g)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如&(a20)的式子叫做二次根式,“L”称为二次根
号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负
数.
六、布置作业
收集于网络,如有侵权请联系管理员删除
精品文档
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步训练》
第一课时作业设计
一、选择题
1.下列式子中,是二次根式的是()
A.-B.yjlC.y[xD.x
2.下列式子中,不是二次根式的是()
A.A/4B.J16C.A/8D.一
x
3.已知一个正方形的面积是5,那么它的边长是()
A.5B.V5C.|D.以上皆不对
二、填空题
1.形如的式子叫做二次根式.
2.面积为a的正方形的边长为.
3.负数平方根.
三、综合提高题
1.某工厂要制作一批体积为lm3的产品包装盒,其高为0.2m,
按设计需要,•底面应做成正方形,试问底面边长应是多少?
2.当X是多少时,叵互+x2在实数范围内有意义?
X
3.若万7+VT^有意义,则尸=.
4.使式子J-(%-有意义的未知数x有()个.
收集于网络,如有侵权请联系管理员删除
精品文档
A.0B.1C.2D.无数
5.已知a、b为实数,且^/^+2m^■=b+4,求a、b的值.
第一课时作业设计答案:
一、1.A2.D3.B
二、1.8(a20)2.83.没有
三、1.设底面边长为x,则0.2x2=l,解答:x-45.
2x+3>0
2.依题意得:
%wO
.•.当x〉N且xWO时,避虫+x2在实数范围内没有意义.
2x
3.-
3
4.B
5.a=5,b=-4
21.1二次根式⑵
第二课时
教学内容
1.8(a20)是一个非负数;
2.(6)2=a(a20).
教学目标
收集于网络,如有侵权请联系管理员删除
精品文档
理解&(a20)是一个非负数和(G)2=a(a20),并利用它
们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出G(a20)是
一个非负数,用具体数据结合算术平方根的意义导出(G)2=a(a
20);最后运用结论严谨解题.
教学重难点关键
1.重点:4a(a20)是一个非负数;(&)2=a(aNO)及其运
用.
2.难点、关键:用分类思想的方法导出&(a^O)是一个非负
数;•用探究的方法导出(&)2=a(a20).
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a20时,&叫什么?当a<0时,G有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
G(a20)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
«(a—0)是一个非负数.
做一做:根据算术平方根的意义填空:
收集于网络,如有侵权请联系管理员删除
精品文档
(V4)2=;(V2)2=;(邪)2=;
(6)2=;
(j)2=;(岛2=;(")2=.
老师点评:"是4的算术平方根,根据算术平方根的意义,74
是一个平方等于4的非负数,因此有(/)2=4.
同理可得:(后)2=2,(也)2=9,(山)2=3,呼)2=\
V33
(&)2=a(a20)
例1计算
1.(舟22.(3A/5)23.(口)24.(五)2
V62
分析:我们可以直接利用(6)2=a(a20)的结论解题.
解:(口)2=3,(36)2=3?
',(75)2-32・5=45,
V22
(P2=3,(直)2=也\)=L
V66222一一“
三、巩固练习
计算下列各式的值:
(M)2(舟2(平)2(Vo)2(唱)2
(3班)2—(56)2
四、应用拓展
例2计算
收集于网络,如有侵权请联系管理员删除
精品文档
1.(Vx+1)2(xNO)2.(7^)23.(J/+2a+i)2
4.(,4%2—12X+9)2
分析:(1)因为x2O,所以x+l〉O;(2)a2^0;(3)
a2+2a+l=(a+1)20;
(4)4X2-12X+9=(2X)2-2•2x•3+32=(2x-3)2^0.
所以上面的4题都可以运用(&)2=a(a20)的重要结论解
题.
解:(1)因为x20,所以x+l〉O
(Vx+1)2=x+l
(2)a2^0,;.(7^)2=a2
(3)*.*a2+2a+l=(a+1)2
又•:(a+1)2,0,.*.a2+2a+1^0,y/a2+2a+l=a2+2a+l
(4)V4X2-12X+9=(2X)2-2・2x・3+32=(2x-3)2
又,:(2x-3)22。
.•.4X2-12X+9,0,("/-12九+9)Mx2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3(2)x4-4(3)2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1.4a(a20)是一个非负数;
2.(Viz)Ja(a20);反之:a=(6)2(a20).
收集于网络,如有侵权请联系管理员删除
精品文档
六、布置作业
1.教材P8复习巩固2.(1)、(2)P97.
2.选用课时作业设计.
3.课后作业:《同步训练》
第二课时作业设计
一、选择题
1.下列各式中加5、岛、扬_1、y/a2+b2>1川+20、V-144,
二次根式的个数是().
A.4B.3C.2D.1
2.数a没有算术平方根,则a的取值范围是().
A.a>0B.a20C.a<0D.a=0
二、填空题
1.(~A/3)2-.
2.已知后有意义,那么是一个数.
三、综合提高题
1.计算
(1)(囱)2(2)-(6)2(3)d#)2(4)(-
2
(5)(273+372)(273-3A/2)
2.把下列非负数写成一个数的平方的形式:
(1)5(2)3.4(3)-(4)x(x,0)
3.已知Jx-y+l+V7M=0,求xy的值.
收集于网络,如有侵权请联系管理员删除
精品文档
4.在实数范围内分解下列因式:
(1)X2-2(2)x4-93x2-5
第二课时作业设计答案:
、I.B2.C
、1.32.非负数
三、1.(1)(@2=9⑵-(6)2=3⑶(依
2」X6=3
42
…3舟2=9x2=6(5)-6
3
2.(1)5-(百)2(2)3.4=(734)2
(3)L(2⑷x=(五)2(x20)
6
%-J+1=0V—3
3.y=34=8i
x—3=0y=4x
4.(1)X2—2=(x+逝)(x-0)
(2)X4~9-(X2+3)(X2-3)=(x2+3)(x+V3)(x-石)
⑶略
21.1二次根式⑶
第三课时
收集于网络,如有侵权请联系管理员删除
精品文档
教学内容
7^=a(a20)
教学目标
理解"=a(a20)并利用它进行计算和化简.
通过具体数据的解答,探究V7=a(a20),并利用这个结论解
决具体问题.
教学重难点关键
1.重点:7?=a(a20).
2.难点:探究结论.
3.关键:讲清a20时,J户=2才成立.
教学过程
一、复习引入
老师口述并板收上两节课的重要内容;
1.形如G(a20)的式子叫做二次根式;
2.&(a20)是一个非负数;
3.(G)2=a(a20).
那么,我们猜想当a20时,,/=2是否也成立呢?下面我们就来
探究这个问题.
二、探究新知
(学生活动)填空:
E=;Vo.oi2=;1Gy=;
收集于网络,如有侵权请联系管理员删除
精品文档
(老师点评):根据算术平方根的意义,我们可以得到:
V?=2;Vo.oi2=0.01;J(:)2;J(|y=|";To^-0;
仔j
因此,一般地:4^=a(a20)
例1化简
(1)V9(2)J(-4)2(3)y/25(4)J(-3『
分析:因为(1)9--32,(2)(-4)2-42,(3)25=52,
(4)(-3)2=32,所以都可运用77=a(a20)•去化简.
解:(1)也=后=3(2)J(-4『=E=4
(3)425-4^-5(4)J(-3)2=7^=3
三、巩固练习
教材P7练习2.
四、应用拓展
例2填空:当a20时,行=;当a<0时,77=,
并根据这一性质回答下列问题.
(1)若J/=a,则a可以是什么数?
(2)若病一a,则a可以是什么数?
(3)必〉a,则a可以是什么数?
收集于网络,如有侵权请联系管理员删除
精品文档
分析:•••J/=a(a20),.•.要填第一个空格可以根据这个结
论,第二空格就不行,应变形,使“()2”中的数是正数,因
为,当aWO时,值=后",那么—NO.
(1)根据结论求条件;(2)根据第二个填空的分析,逆向思
想;⑶根据(1)、(2)可知"=|a|,而|a|要大于a,只
有什么时候才能保证呢?a<0.
解:(1)因为疗=a,所以a20;
(2)因为正=-a,所以aWO;
(3)因为当a20时J/=a,要使J户>a,即使a>a所以a不存
在;当a〈0时,J?=-a,要使,户〉a,即使-a〉a,a〈0综上,a<0
例3当x>2,化简例x--J(l-2x)2.
分析:(略)
五、归纳小结
本节课应掌握:J/=a(aNO)及其运用,同时理解当a<0时,
=一a的应用拓展.
六、布置作业
1.教材P8习题21.13、4、6、8.
2.选作课时作业设计.
3.课后作业:《同步训练》
第三课时作业设计
一、选择题
1.J(2;)2+J(—2;)2的值是().
收集于网络,如有侵权请联系管理员删除
精品文档
A.0B.-C.4-D.以上都不对
33
2.a20时,笳、后存、-亚,比较它们的结果,下面四个
选项中正确的是().
A.=J(-a)2V?"B.V?)“-a,
C.<^/(-tz)2D.-7?>4^={(-a)。
二、填空题
1.-70.0004=.
2.若丽是一个正整数,则正整数m的最小值是.
三、综合提高题
1.先化简再求值:当a=9时,求a+,l-2°+日的值,甲乙两人的
解答如下:
甲的解答为:原式=a+J(l-a)2=a+(『a)=1;
乙的解答为:原式=a+«-a)?=a+(a-1)=2a-l=17.
两种解答中,的解答是错误的,错误的原因是
2.若|1995-a|+,a-2000=a,求aT995?的值.
(提示:先由a-200020,判断1995-a•的值是正数还是负数,
去掉绝对值)
3.若-3WxW2时,试化简|x-2|+J(X+3)2+Jx:-10x+25。
答案:
、1.C2.A
收集于网络,如有侵权请联系管理员删除
精品文档
二、1.-0.022.5
三、L甲甲没有先判定卜a是正数还是负数
2.由已知得a-200020,a22000
所以aT995+血-2000=a,血-2000=1995,a-2000=19952,
所以aT9952=2000.
3.10-x
21.2二次根式的乘除
第一课时
教学内容
\fa,s/b=4ab(a20,b20),反之=G,\fb(a20,b2
0)及其运用.
教学目标
理解&,4b=4ab(a20,bNO),4ab-4a•y/b(a20,b,
0),并利用它们进行计算和化简
由具体数据,发现规律,导出行•4b=4ab(a20,b20)并运
用它进行计算;•利用逆向思维,得出,石=6,4b(a20,b20)
并运用它进行解题和化简.
教学重难点关键
收集于网络,如有侵权请联系管理员删除
精品文档
重点:4a,4b=4ab(a20,b20),4ab->Ja•s/b(a20,b
20)及它们的运用.
难点:发现规律,导出G-4b=4ab(a20,b20).
关键:要讲清(a<0,b<0)—y[as[b,如
J(—2)X(—3)=J—(—2)X—(—3)或J(—2)X(—3)==叵X6.
教学过程
一、复习引入
(学生活动)请同学们完成下列各题.
1.填空
(1)口X邪=,,4x9=;
(2)屈X后=,716x25=.
(3)V100X,00义36=.
参考上面的结果,用“〉、<或="填空.
V4X耶_____74^9,716XV25716x25,^/100X
A/367100x36
2.利用计算器计算填空
(1)V2X73______A/6,(2)V2X75——府,
(3)V5X瓜___—底,(4)V4X75—___而,
(5)V7xVio―___屈.
老师点评(纠正学生练习中的错误)
二、探索新知
(学生活动)让3、4个同学上台总结规律.
收集于网络,如有侵权请联系管理员删除
精品文档
老师点评:(1)被开方数都是正数;
(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二
次根式中的数相乘,作为等号另一边二次根式中的被开方数.
一般地,对二次根式的乘法规定为
G•枇=猴.(a20,b20)
反过来:\=«•&(a20,b,0)
例L计算
(1)非乂出(2)J*百(3)79XV27(4)木X灰
分析:直接利用6-6=疝(a20,b20)计算即可.
解:(1)75X77=735
(2)£*8=J;x9=6
(3)79XV27=V9X27=792X3=9A/3
(4)R*娓=/义
例2化简
(1)79x16(2)716x81(3)>/81x100
(4)^9x2y2(5)V54
分析:利用,拓=&•4b(a20,b20)直接化简即可.
解:(1)A/9716=A/9X716=3X4=12
(2)716x81=V16X781-4X9=36
(3)781x100=781xTioo=9x10=90
(4),9尤2y2-正XJx2y2=正xV?X=3xy
收集于网络,如有侵权请联系管理员删除
精品文档
(5)\/54=J9x6=V?X76=3V6
三、巩固练习
(1)计算(学生练习,老师点评)
①屈X氓(2)376X2V10③回•存^
(2)化简:720;V18;V24;后;J12a&
教材Pu练习全部
四、应用拓展
例3.判断下列各式是否正确,不正确的请予以改正:
(1)J(T)X(_9)=QX"
(2)X后=4义居X后=4层X后=4厄=8石
解:(1)不正确.
改正:J(T)x(-9)=J4x9=CXy/9-2X3-6
(2)不正确.
改正:X后=、陛X后=j»x25=y/H^=416x7=46
V25V25V25
五、归纳小结
本节课应掌握:(1)无・&=岚=(a20,b20),
4ab-4a,4b(a20,b20)及其运用.
六、布置作业
1.课本P151,4,5,6.(1)(2).
2.选用课时作业设计.
收集于网络,如有侵权请联系管理员删除
精品文档
3.课后作业:《同步训练》
第一课时作业设计
一、选择题
1.若直角三角形两条直角边的边长分别为厉cm和屈cm,•那
么此直角三角形斜边长是().
A.372cmB.373cmC.9cmD.27cm
2.化简的结果是().
Va
A.y/-aB.y[aC.~4~aD.-4a
3.等式Vx+1-JX-1=一1成立的条件是()
A.x,lB.x^-1C.D.x,l或xW
-1
4.下列各等式成立的是().
A.475X2V5=875B.58X40=20百
C.473X3V2=7T5D.5A/3X4V2=20V6
二、填空题
1.J1014=.
2.自由落体的公式为S=;gt2(g为重力加速度,它的值为
10m/s2),若物体下落的高度为720m,则下落的时间是
三、综合提高题
收集于网络,如有侵权请联系管理员删除
精品文档
1.一个底面为30cmX30cm长方体玻璃容器中装满水,•现将一
部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水
时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?
2.探究过程:观察下列各式及其验证过程.
+3
验证:3忐
3(32-1)+3f3(32-l),3
32-132-132-1
同理可得:4
5
5
24
通过上述探究你能猜测出:a(a>0),并验证你的
结论.
答案:
一、1.B2.C3.A4.D
二、1.13762.12s
三、1.设:底面正方形铁桶的底面边长为X,
收集于网络,如有侵权请联系管理员删除
精品文档
则x?X10=30X30X20,x2=30X30X2,
x=j30x30X72=3072.
21.2二次根式的乘除
第二课时
教学内容
*=甘(a20,b>0),反过来有(a20,b>0)及利用它
们进行计算和化简.
教学目标
理解率=口(a,0,b>0)和(a,0,b>0)及禾U用它们
y[b\b4b
进行运算.
利用具体数据,通过学生练习活动,发现规律,归纳出除法规
定,并用逆向思维写出逆向等式及利用它们进行计算和化简.
收集于网络,如有侵权请联系管理员删除
精品文档
教学重难点关键
4a_a同=*(a20,b>0)及
1.重点:理解(a20,b>0),
访一收b4b
利用它们进行计算和化简.
2.难点关键:发现规律,归纳出二次根式的除法规定.
教学过程
一、复习引入
(学生活动)请同学们完成下列各题:
1.写出二次根式的乘法规定及逆向等式.
2.填空
邪9
(1)
V1616
(2)16
V36-36
(3)旃=5
736_36
(4)
V81-81
代叵.亘
规律:>
16'病36,V165
叵36
A/8181
3.利用计算器计算填空:
(1)£=
⑵*(3)
V4'
V2_(4)*
忑一
收集于网络,如有侵权请联系管理员删除
精品文档
规律:若B72[2V2
h耳
且a
?8-------V8
每组推荐一名学生上台阐述运算结果.
(老师点评)
二、探索新知
刚才同学们都练习都很好,上台的同学也回答得十分准确,根据
大家的练习和回答,我们可以得到:
一般地,对二次根式的除法规定:
而4a_寸(a20,b>0),
反过来,巨=*(a》0,b>0)
b4b
下面我们利用这个规定来计算和化简一些题目.
分析:上面4小题利用亨=聆
(aNO,b>0)便可直接得出答
案.
收集于网络,如有侵权请联系管理员删除
精品文档
(4)
例2.化简:
⑷J彘
分析:直接利用。=事
(a20,b>0)就可以达到化简之目的.
解:
三、巩固练习
教材P14练习1.
四、应用拓展
例工已知小言=岩’且x为偶数,求。+x)"丁+4的
值.
分析:式子「=1,只有a20,b〉0时才能成立.
因此得到9-xNO且x-6>0,即6〈xW9,又因为x为偶数,所以
x=8.
19-壮0,即,x<9
解:由题意得
%-6>0x>6
收集于网络,如有侵权请联系管理员删除
精品文档
•\6<xW9
•••x为偶数
.♦.x=8
[(x-4)(x-1)
;•原式=(1+x)
\(x+l)(x-l)
x-4
=(1+x)
x+1
=(1+x)-«+%)(%—4)
J(x+1)
当x=8时,原式的值=J4x9-6.
五、归纳小结
同=里(a20,b>0)及
本节课要掌握'I(a20,b>0)和
b4b
其运用.
六、布置作业
1.教材P15习题21.22、7、8、9.
2.选用课时作业设计.
3.课后作业:《同步训练》
第二课时作业设计
一、选择题
1.计算jq-jg/g的结果是().
A.-V5B.-C.0D.正
777
收集于网络,如有侵权请联系管理员删除
精品文档
2.阅读下列运算过程:
1_73_732_2A/5_2A/5
A/36义6375A/5x755
数学上将这种把分母的根号去掉的过程称作“分母有理化”,那
么,化简京的结果是().
A.2B.6C.-V6D.R
3
二、填空题
1.分母有理化:⑴力:--------。)卡=——;◎)
2^5~----------,
2.已知x=3,y=4,z-5,那么正的最后结果是
三、综合提高题
1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为
右:1,•现用直径为3厉cm的一种圆木做原料加工这种房梁,那
么加工后的房染的最大截面积是多少?
2.计算
(1)工三•(」、H)(m>0,n>0)
mV2m'm\mV2m
(2)—3师-3〃2.(』J")Xp—(a>0)
Y2a22\a2\m-n
答案:
一、1.A2.C
收集于网络,如有侵权请联系管理员删除
精品文档
叵⑵立.⑶屈_也义小二叵
6'6''2卮2后—2
三、1.设:矩形房梁的宽为x(cm),则长为出xcm,依题
忌,
得:(逐X)2+x2=(3V15)2,
4x2=9X15,x=-V15(cm),
2
73x•X=A/3x2=^-V3(cm2).
4
2.(1)原式=一J、匹+、匹三五
-八八2\1C.八八5\1G,“13-2\15
(2)原式=-2p(m+")^2x上x二=-2叵=-&a
\2crm+nm—nV2
21.2二次根式的乘除(3)
第三课时
教学内容
最简二次根式的概念及利用最简二次根式的概念进行二次根式
的化简运算.
教学目标
收集于网络,如有侵权请联系管理员删除
精品文档
理解最简二次根式的概念,并运用它把不是最简二次根式的化
成最简二次根式.
通过计算或化简的结果来提炼出最简二次根式的概念,并根据
它的特点来检验最后结果是否满足最简二次根式的要求.
重难点关键
1.重点:最简二次根式的运用.
2.难点关键:会判断这个二次根式是否是最简二次根式.
教学过程
一、复习引入
(学生活动)请同学们完成下列各题(请三位同学上台板书)
1.计算(1)回,(2)婆,(3)上
V5V27V2a
老师点评:电叵,矍二色器;如
y55J273a
2.现在我们来看本章引言中的问题:如果两个电视塔的高分别
是hikm,h2km,那么它们的传播半径的比是.
它们的比是
yj2Rh2
二、探索新知
观察上面计算题1的最后结果,可以发现这些式子中的二次根
式有如下两个特点:
1.被开方数不含分母;
2.被开方数中不含能开得尽方的因数或因式.
我们把满足上述两个条件的二次根式,叫做最简二次根式.
收集于网络,如有侵权请联系管理员删除
精品文档
那么上题中的比是否是最简二次根式呢?如果不是,把它们化
成最简二次根式.
学生分组讨论,推荐3〜4个人到黑板上板书.
老师点评:不是.
)2取V2^一包一4,
例L(1)3后;(2)G7K^;(3)标了
例2.如图,在RtaABC中,ZC=90°,AC=2.5cm,BC=6cm,
求AB的长.
解:因为AB2=AC?+BC2
所以AB=J2S+62我)2+36=秒=噜=+6.5(cm)
因此AB的长为6.5cm.
三、巩固练习
教材儿练习2、3
四、应用拓展
例3.观察下列各式,通过分母有理数,把不是最简二次根式的
化成最简二次根式:
1_lx(V2-l)V2-l_后7
-
访(A/2+1)(V2-1)TT"'
收集于网络,如有侵权请联系管理员删除
精品文档
1_lx(V3-V2)_V3-V2_
(G+4(G-扬―丁二
]
同理可得:—yfi-,\/3
■\/4+sfi
从计算结果中找出规律,并利用这一规律计算
(-^―+广1厂+/厂+...I——1]_=)(V2002+1)的
A/2+1V3+V2V4+V3V2002+J2001
值.
分析:由题意可知,本题所给的是一组分母有理化的式子,因
此,分母有理化后就可以达到化简的目的.
角军:原式二(A/2-1+V3-V2+V4-V3+...+V2002-72001)X
(V2002+1)
=(V2002-1)(V2002+1)
=2002-1=2001
五、归纳小结
本节课应掌握:最简二次根式的概念及其运用.
六、布置作业
1.教材P15习题21.23、7、10.
2.选用课时作业设计.
3.课后作业:《同步训练》
第三课时作业设计
一、选择题
收集于网络,如有侵权请联系管理员删除
精品文档
1.如果戊(y>0)是二次根式,那么,化为最简二次根式是
().
A.4(y>0)B.而(y>0)C.叵(y>0)
D.以上都不对
2.把(aT)、匚工中根号外的(aT)移入根号内得().
Va-1
A.y]ci—1B.Jl—aC.-yjci—1D.-Jl—a
3.在下列各式中,化简正确的是()
A.#=3而B.Q=土;0
C.而4二尴\fbD.Jr3=xJx-i
4.化简挈的结果是()
V27
A.-巫B.-二C.--D.-V2
3733
二、填空题
1.化简Jx4+Jy2=.(x20)
2.2、5军化简二次根式号后的结果是_______.
Va
三、综合提高题
1.已知a为实数,化简:"-a、口,阅读下面的解答过
Va
程,请判断是否正确?若不正确,请写出正确的解答过程:
—J—〃=(cL~1)J-a
a
收集于网络,如有侵权请联系管理员删除
精品文档
2.若X、y为实数,且y=&4++1,求Jx+y的
人I乙
答案:
、1.C2.D3.C4.C
二、1.xJx2+.22.-y/-a-l
三、L不正确,正确解答:
-tz3>0
因为1,所以a〈0,
——>0
、a
aN—a+J—a=(1-a)J—a
r2-4>01
2.V-.*.x-4=o,.*.x=±2,但•.•x+2W0,,x=2,y=-
4-x2>0
164
21.3二次根式的加减(1)
第一课时
教学内容
二次根式的加减
教学目标
收集于网络,如有侵权请联系管理员删除
精品文档
理解和掌握二次根式加减的方法.
先提出问题,分析问题,在分析问题中,渗透对二次根式进行
加减的方法的理解.再总结经验,用它来指导根式的计算和化简.
重难点关键
1.重点:二次根式化简为最简根式.
2.难点关键:会判定是否是最简二次根式.
教学过程
一、复习引入
学生活动:计算下列各式.
(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-
2a2+a3
教师点评:上面题目的结果,实际上是我们以前所学的同类项
合并.同类项合并就是字母不变,系数相加减.
二、探索新知
学生活动:计算下列各式.
(1)20+30(2)278-3^/8+578
(3)币+2币+3际i(4)3V3-2V3+V2
老师点评:
(1)如果我们把应当成x,不就转化为上面的问题吗?
20+30=(2+3)0=50
(2)把我当成y;
2瓜-3瓜+5瓜=(2-3+5)瓜=4瓜=86
收集于网络,如有侵权请联系管理员删除
精品文档
(3)把S当成z;
+2S+也#i
=2^/7+2^/7+3V7=(1+2+3)V7=677
(4)也看为x,夜看为y.
3V3-2V3+V2
=(3-2)百+0
=V3+V2
因此,二次根式的被开方数相同是可以合并的,如2虎与掂表
面上看是不相同的,但它们可以合并吗?可以的.
(板书)372+78=372+272=572
3月+后=3有+3省=66
所以,二次根式加减时,可以先将二次根式化成最简二次根
式,再将被开方数相同的二次根式进行合并.
例1.计算
(1)V8+A/18(2)7167+7647
分析:第一步,将不是最简二次根式的项化为最简二次根式;
第二步,将相同的最简二次根式进行合并.
解:(1)^+718=272+372=(2+3)V2=572
(2)J16x+,64x=4Vx+8y/x=(4+8)A/X=12s[x
例2.计算
(1)3748-9^1+3A/12
(2)(V48+^)+(V12-A/5)
收集于网络,如有侵权请联系管理员删除
精品文档
解:(1)3M—9J+3a二126一3石+6班=(12-3+6)
y/3=15-^3
(2)(748+^20)+(712-75)=/+而+疵-百
=4月+2有+2省-石=6百+君
三、巩固练习
教材P19练习1、2.
四、应用拓展
例3.已知4x?+y2-4x-6y+10=0,求(.|x79x+y2^^-)-
(xz[-5XR)的值.
分析:本题首先将已知等式进行变形,把它配成完全平方式,
2
得(2x-l)+(y-3)2=0,即x=Ly=3.其次,根据二次根式的加
2
减运算,先把各项化成最简二次根式,再合并同类二次根式,最后
代入求值.
解:V4x2+y2-4x-6y+10=0
V4x2-4x+l+y2-6y+9=0
(2x-l)2+(y-3)2=0
x=-,y=3
2
原式专反+丫213.+5*@
=2xVx+yjxy_xVx+5^xy
=xVx
收集于网络,如有侵权请联系管理员删除
精品文档
当X=-,y=3时,
2
原式3X©6启『3n
五、归纳小结
本节课应掌握:(1)不是最简二次根式的,应化成最简二次根
式;(2)相同的最简二次根式进行合并.
六、布置作业
1.教材P21习题21.31、2、3、5.
2.选作课时作业设计.
3.课后作业:《同步训练》
第一课时作业设计
一、选择题
1.以下二次根式:①也;②后;③岛④后中,与g是
同类二次根式的是().
A.①和②B.②和③C.①和④D.③和④
2.下列各式:①36+3=6百;②二币二1;③
7
V2+V6=A/8=2V2;④华=20,其中错误的有().
A.3个B.2个C.1个D.0个
二、填空题
1.在次、-V75a>2瓦、V125>26/、3^/02>-2、口中,
33a\8
与后是同类二次根式的有.
收集于网络,如有侵权请联系管理员删除
精品文档
2.计算二次根式5&-3酩-76+96的最后结果是
三、综合提高题
1.已知君72.236,求(胸—仁)-(旧+[痛)的
值.(结果精确到0.01)
2.先化简,再求值.
(6xp+3jxy3)-(4x『+'36町),其中x=-1,y=27.
答案:
一、1.C2.A
二、1.—y/15a2J3/2.64b_24a
3a
三、1.M^=4V5A/575-yA/5=1A/5X2.236^0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技公司商业模式创新的成功案例研究
- 科技助力构建平安校园新生态
- 家庭教育与医疗健康的关系
- DB6103T 81-2025袋栽银耳栽培技术规范
- DB35T 2228-2024科技成果转化效果评估导则
- 个人向企业租赁设备合同标准范本
- 个人地下停车位转让合同书
- 三人共同持股合同范例
- 个人贷款合同样本(房产抵押)
- 二人合资创业合同书:经营合作协议
- 工业自动化生产线操作手册
- 《走进神奇》说课稿
- 2024年内蒙古中考语文试卷五套合卷附答案
- 湖南2024年湖南省卫生健康委直属事业单位招聘276人笔试历年典型考题及考点附答案解析
- 五年级下册语文教案 学习双重否定句 部编版
- 南京地区幼儿园室内空气污染物与儿童健康的相关性研究
- 2024年湖南铁路科技职业技术学院单招职业技能测试题库及答案解析
- (正式版)SHT 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范
- (正式版)JBT 9630.1-2024 汽轮机铸钢件无损检测 第1部分:磁粉检测
- 平安产险陕西省地方财政生猪价格保险条款
- 地震应急救援培训课件
评论
0/150
提交评论