




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初二上册压轴题模拟数学试卷1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式.(1)________;(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由;(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系.2.已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°.(1)已知a,b满足等式|a+b|+b2+4b=-4.①求A点和B点的坐标;②如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论.3.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点.(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:.4.如图,在平面直角坐标系中,已知点,,且,为轴上点右侧的动点,以为腰作等腰,使,,直线交轴于点.(1)求证:;(2)求证:;(3)当点运动时,点在轴上的位置是否发生变化,为什么?5.已知,.(1)若,作,点在内.①如图1,延长交于点,若,,则的度数为;②如图2,垂直平分,点在上,,求的值;(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.6.如图1,在平面直角坐标系中,,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.(1)求的值;(2)当为何值时,(3)如图2,在第一象限存在点,使,求.7.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.(1)如图1,连CF,求证:△ACF≌△AEF.(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是(只填写结果).8.在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.【参考答案】2.(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得,结合已知条件,等量代换即可得到结论;解析:(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得,结合已知条件,等量代换即可得到结论;(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明为等边三角形,即可得到结论.(1)解得(2)是等腰三角形,理由如下:由点A(a,0)、点B(b,0)为x轴上两点,且可得,OA=OBOC垂直平分AB,是等腰三角形(3),理由如下:如图,延长GF至点M,使FM=FG,连接CG、CM、AMF为AD的中点在和中垂直平分,BG平分为等边三角形,在和中
即是等腰三角形为等边三角形
在中,.【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键.3.(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析.【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;②过C作y解析:(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析.【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案;(2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立.【详解】解:(1)∵,∴,∴,∴,,∴,∴,∴A(0,2),B(2,0);②过C作x轴垂线交BA的延长线于E,∵OA=OB=2,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠ABO=45°,∵EC⊥BC,∴△BCE是等腰直角三角形,∴BC=EC,∠BCE=90°=∠ACD,∴∠ACE=∠DCB,∵AC=DC,∴△CEA≌△CBD,∴∠CBD=∠E=45°,∴OH=OB=2,∴H(0,2);(2)补全图形,如图:∵点B、E关于y轴对称,∴OB=OE,∵a+b=0,即∴OA=OB=OE延长OF至G使FG=OF,连DG,CG,∵OF=FG,∠OFE=∠DFG,EF=DF∴△DFG≌△EFO∴DG=OE=OA,∠DGF=∠EOF∴DG∥OE∴∠CDG=∠DCO;∵∠ACO+∠CAO=∠ACO+∠DCO=90°,∴∠DCO=∠CAO;∴∠CDG=∠DCO=∠CAO;∵CD=AC,OA=DG∴△DCG≌△ACO∴OC=GC,∠DCG=∠ACO∴∠OCG=90°,∴∠COF=45°,∴△OCG是等腰直角三角形,由三线合一定理得CF⊥OF∵∠OCF=∠COF=45°,∴CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题.4.(1);(2)证明见解析;(3)证明见解析.【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析.【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论;(3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论.【详解】解:(1)∵a2-2ab+2b2-16b+64=0,∴(a-b)2+(b-8)2=0,∴a=b=8,∴b-6=2,∴点C(2,-8);(2)∵a=b=8,∴点A(0,6),点B(8,0),点C(2,-8),∴AO=6,OB=8,如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q,∴四边形AOBP是矩形,∴AO=BP=6,AP=OB=8,∵点B(8,0),点C(2-8),∴CQ=6,BQ=8,∴AP=BQ,CQ=BP,又∠APB=∠BCQ∴△ABP≌△BCQ(SAS),∴AB=BC,∠BAP=∠CBQ,∵∠BAP+∠ABP=90°,∴∠ABP+∠CBQ=90°,∴∠ABC=90°,∴△ABC是等腰直角三角形,∴∠BAC=45°,∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°,∴∠OAC+∠ABO=45°;(3)如图2,过点A作AT⊥AB,交x轴于T,连接ED,∴∠TAE=90°=∠AGE,∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG,∴∠ATO=∠GAE,∠TAO=∠AEG,又∵EG=AO,∴△ATO≌△EAG(AAS),∴AT=AE,OT=AG,∵∠BAC=45°,∴∠TAD=∠EAD=45°,又∵AD=AD,∴△TAD≌△EAD(SAS),∴TD=ED,∠TDA=∠EDA,∵EG⊥AG,∴EG∥OB,∴∠EFD=∠TDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=ED=TD=OT+OD=AG+OD,∴EF=AG+OD.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.5.(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;解析:(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论.【详解】解:(1)证明:,,解得,,,作于点,,,,,在与中,,,;(2)证明:,,即,在与中,,;(3)点在轴上的位置不发生改变.理由:设,由(2)知,,,,为定值,,长度不变,点在轴上的位置不发生改变.【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.6.(1)①15°;②;(2)【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;②构造“一线三垂直”模型,证解析:(1)①15°;②;(2)【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.【详解】(1)①连接AE,在,因为,,,,,,,,,,,,,,故答案为:.②过C作交DF延长线于G,连接AEAD垂直平分BE,,,,,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,,,,,,,等边中,,,,,在和中,,等边三角形三线合一可知,BD是边AK的垂直平分线,,,,,故答案为:.【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.7.(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(解析:(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(2)当动点沿轴正方向运动时,如解图-2-1:
当动点沿轴负方向运动时,如解图-2-2:(3)过作,连在与∴,在与中∴,,∴,,∴是等边三角形,∴,又∵∴∵∴【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键.8.(1)证明见解析(2),证明见解析(3)6【分析】(1)由角平分线的定义可知,再根据等量代换得出AC=AE,由此可直接利用“SAS”证明;(2)在BE上截取BM=CF,连接AM.由解析:(1)证明见解析(2),证明见解析(3)6【分析】(1)由角平分线的定义可知,再根据等量代换得出AC=AE,由此可直接利用“SAS”证明;(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.(1)∵AF平分∠CAE,∴.∵AB=AC,AB=AE,∴AC=AE.又∵AF=AF,∴.(2)证明:∵,∴,.如图,在BE上截取BM=CF,连接AM.在和中,,∴,∴,.∵,,∴为等边三角形,∴.∵,∴,即,∴为等边三角形,∴,∴.即AF,EF,BF之间存在的关系为:;(3)如图,延长BA,CF交于点N.∵,,∴为等腰直角三角形,∴,.∵AE∥BC,∴.∵,∴,∴.由(1)可知,∴,∴,即.∵为的角平分线,∴.∵,∴,即.在和中,,∴,∴.故答案为:6.【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.9.(1)见解析(2)(3)【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=18解析:(1)见解析(2)(3)【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;(3)先由∠BCP=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国氧化锌脱硫剂行业发展分析及竞争策略与趋势预测研究报告
- 2025-2030中国正丁基三乙二胺行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国模拟游戏行业市场发展分析及发展趋势与投资研究报告
- 2025-2030中国椰子水行业市场深度调研与趋势预测研究报告
- 2025-2030中国果汁自动贩卖机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国杨梅酒行业市场发展运行及发展趋势与投资前景研究报告
- 2025-2030中国机械油行业市场深度调研及竞争格局与投资研究报告
- 2025-2030中国有机螺旋藻粉行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国有机光伏材料行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国智能漂移踏板车行业市场现状供需分析及投资评估规划分析研究报告
- 腰椎间盘突出症试讲教案
- 2025重庆西南证券股份有限公司招聘45人笔试参考题库附带答案详解
- 2025-2030中国汽车用铝板行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 译林版六年级英语下册期中试卷及答案【真题】
- 湖南省示范性高中2024-2025学年高二下学期2月联考 物理试卷(含解析)
- 2025年《宏观经济政策与发展规划》考前通关必练题库(含答案)
- 服装公司品质(质量)管理手册
- 一年级道德与法治下册素养教案第10课 相亲相爱一家人
- 办公楼弱电系统设计方案
- 私募投资学试题及答案
- 2025届山东省青岛市高三下学期一模读后续写+替补队员+讲义
评论
0/150
提交评论