2023年人教版七7年级下册数学期末综合复习(含答案)_第1页
2023年人教版七7年级下册数学期末综合复习(含答案)_第2页
2023年人教版七7年级下册数学期末综合复习(含答案)_第3页
2023年人教版七7年级下册数学期末综合复习(含答案)_第4页
2023年人教版七7年级下册数学期末综合复习(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年人教版七7年级下册数学期末综合复习(含答案)一、选择题1.如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有()A.2个 B.3个 C.4个 D.5个2.在以下现象中,属于平移的是()①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A.①② B.②④ C.②③ D.③④3.点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列四个命题其中正确的个数是()①对顶角相等;②在同一平面内,若,与相交,则与也相交;③邻补角的平分线互相垂直;④在同一平面内,垂直于同一条直线的两条直线互相垂直A.1个 B.2个 C.3个 D.4个5.如图所示,,OE平分∠AOD,,,则∠BOF为()A. B. C. D.6.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.负数没有立方根C.任何一个数都有平方根和立方根D.任何数的立方根都只有一个7.如图,和相交于点O,则下列结论正确的是()A. B. C. D.8.如图,一个蒲公英种子从平面直角坐标系的原点出发,向正东走米到达点,再向正北方向走米到达点,再向正西方向走米到达点,再向正南方向走米到达点,再向正东方向走米到达点,以此规律走下去,当蒲公英种子到达点时,它在坐标系中坐标为()A. B. C. D.九、填空题9.若,则x+y+z=________.十、填空题10.已知点与点关于轴对称,那么________.十一、填空题11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号)十二、填空题12.如图,已知AB//EF,∠B=40°,∠E=30°,则∠C-∠D的度数为________________.十三、填空题13.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=___°.十四、填空题14.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x的值是_____.十五、填空题15.已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_______________.十六、填空题16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.十七、解答题17.计算:(1)(2)十八、解答题18.求下列各式中x的值:(1)(x+1)3﹣27=0(2)(2x﹣1)2﹣25=0十九、解答题19.如图,点F在线段AB上,点E、G在线段CD上,AB∥CD.(1)若BC平分∠ABD,∠D=100°,求∠ABC的度数;解:∵AB∥CD(已知),∴∠ABD+∠D=180°().∵∠D=100°(已知),∴∠ABD=80°.又∵BC平分∠ABD,(已知),∴∠ABC=∠ABD=°().(2)若∠1=∠2,求证:AE∥FG(不用写依据).二十、解答题20.在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.画出平移后的线段AB.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.二十一、解答题21.对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3.(1)仿照以上方法计算:[]=;[]=.(2)若[]=1,写出满足题意的x的整数值.(3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数,次之后结果为1.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.二十四、解答题24.如图1,,在、内有一条折线.(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系.二十五、解答题25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在中,、分别平分和,请直接写出和的关系;②如图4,.(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.【参考答案】一、选择题1.B解析:B【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:∠B的同旁内角有∠BAE,∠BAC和∠C,共有3个,故选:B.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项.【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;故选C.【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.4.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;②在同一平面内,若,与相交,则与也相交,正确;③邻补角之和为180°,所以它们平分线的夹角为,即邻补角的平分线互相垂直,正确;④在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D.【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.5.B【分析】由平行线的性质和角平分线的定义,求出,,然后即可求出∠BOF的度数.【详解】解:∵,∴,,∵OE平分∠AOD,∴,∴;∴;故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.【详解】A、一个数的立方根只有1个,故本选项错误;B、负数有立方根,故本选项错误;C、负数只有立方根,没有平方根,故本选项错误;D、任何数的立方根都只有一个,故本选项正确.故选:D.【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.7.A【分析】根据对顶角的性质和平行线的性质判断即可.【详解】解:A、∵和是对顶角,∴,选项正确,符合题意;B、∵与OB相交于点A,∴与OB不平行,∴,选项错误,不符合题意;C、∵AO与BC相交于点B,∴AO与BC不平行,∴,选项错误,不符合题意;D、∵OD与BC相交于点C,∴OD与BC不平行,∴,选项错误,不符合题意.故选:A.【点睛】此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.6【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.十、填空题10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.十一、填空题11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,∴∠1=∠2,A=AC,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,∴∠1=∠2,A=AC,DC=D,∴AD垂直平分C′C;∴①,②都正确;∵B=D,DC=D,∴B=D=DC,∴∠3=∠B,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B=2∠BC;∴③错误;根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3,∵∠ACB的角平分线交AD于点E,∴2(∠6+∠5)=2∠B,∴∴D∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题12.10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解析:10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解:如图,过点C作CG∥AB,过点D作DH∥EF,∵AB//EF,∴AB∥CG∥DH∥EF,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.十三、填空题13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM==115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM==115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.十五、填空题15.(2,2)或(4,-4).【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P的坐标.【详解】解:∵点P到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P的坐标.【详解】解:∵点P到两坐标轴的距离相等∴=∴3a-1=3-a或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.十六、填空题16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2)∴AB=CD=2,AD=BC=3,∴四边形ABCD的周长=AB+AD+BC+CD=10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.十七、解答题17.(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式=解析:(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式=-6+2+1+=.故答案为:(1)-5;(2).【点睛】本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE∥FG.【详解】(1)∵AB∥CD(已知),∴∠ABD+∠D=180°(两直线平行,同旁内角互补),∵∠D=100°(已知),∴∠ABD=80°,又∵BC平分∠ABD(已知),∴∠ABC=∠ABD=40°(角平分线的定义).故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:∵AB∥CD,∴∠1=∠FGC,又∵∠1=∠2,∴∠2=∠FGC,∴AE∥FG.【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键.二十、解答题20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解.【详解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)利用割补法,得到即可求解.【详解】解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;∵N(3,-2),∴将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)∴②点B的坐标为(6,3);(2)如图,过点B作BE⊥x轴于点E,过点A作AD⊥y轴交EB的延长线于点D,则四边形AOED是矩形,∵A(0,4),B(6,3),C(4,0)∴E(6,0),D(6,4)∴AO=4,CO=4,EO=6,∴CE=EO-CO=6-4=2,BE=3,DE=4,AD=6,BD=DE-BE=4-3=1,∴【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键.二十一、解答题21.(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:[16]=4;[24]=4;(2)若[x]=1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:;(2)若[]=1,写出满足题意的x的整数值1,2,3;(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.二十二、解答题22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)=20(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a=±,∵3a表示长度,∴a>0,∴a=,∴这个长方形场地的周长为2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BPHDGE,过F作FQHDGE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论