版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页2021年新教材高中数学必修第二册《统计》测试卷(时间:100分钟,满分100分)一、选择题(本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本量是100解析:选D总体是1000名运动员的年龄,所以A项不正确;个体是每一名运动员的年龄,所以B项不正确;样本是100名运动员的年龄,所以C项不正确;很明显样本量是100.故选D.2.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组 B.9组C.8组 D.7组解析:选B根据列频率分布表的步骤,eq\f(140-51,10)=8.9,所以分为9组较为恰当.故选B.3.为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60m;从南方抽取了200个男孩,平均身高1.50m,由此可推断我国13岁的男孩平均身高为()A.1.54m B.1.55mC.1.56m D.1.57m解析:选C我国13岁的男孩平均身高为(300×1.60+200×1.50)/(300+200)=1.56(m).故选C.4.下列说法错误的是()A.在统计里,最常用的简单随机抽样方法有抽签法和随机数法B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大解析:选B平均数不大于最大值,不小于最小值.故选B.5.某题的得分情况如下:得分/分01234频率/%37.08.66.028.220.2其中众数是()A.37.0% B.20.2%C.0分 D.4分解析:选C根据众数的概念可知C正确.故选C.6.一个频数分布表(样本量为30)不小心被损坏了一部分,若样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为()A.15 B.16C.17 D.19解析:选A20到60之间有30×0.8=24(个),20到40之间一共有4+5=9(个),故[40,50),[50,60)内共有24-9=15(个).故选A.7.在用样本的频率分布估计总体的频率分布的过程中,下列说法正确的是()A.总体的容量越大,估计越准确B.总体的容量越小,估计越准确C.样本的容量越大,估计越准确D.样本的容量越小,估计越准确解析:选C根据样本的频率分布可知,样本的频率分布反映的是总体中部分个体的频率分布,只有当样本的容量越大时,估计才越准确.故选C.8.某校举行歌咏比赛,7位评委给各班演出的节目评分,去掉一个最高分,再去掉一个最低分后,所得平均数作为该班节目的实际得分.对于某班的演出,7位评委的评分分别为:9.65,9.70,9.68,9.75,9.72,9.65,9.78,则这个班节目的实际得分是()A.9.66 B.9.70C.9.65 D.9.67解析:选B这个班节目的实际得分为eq\f(9.65+9.70+9.68+9.75+9.72,5)=9.70.故选B.9.以下四个叙述:①极差与方差都反映了数据的集中程度;②方差是没有单位的统计量;③标准差比较小时,数据比较分散;④只有两个数据时,极差是标准差的2倍,其中正确的是()A.①④ B.②③C.①③ D.②④解析:选A只有两个数据时,极差等于|x2-x1|,标准差等于eq\f(1,2)|x2-x1|.故④正确.由定义可知①正确,②③错误.故选A.10.从某批零件中抽取50个.然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为()A.36% B.72%C.90% D.25%解析:选C由题意知,该产品的合格率为eq\f(36,40)×100%=90%.故选C.11.港珠澳大桥是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55km.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查,据此画出频率分布直方图如图,根据直方图估计在此路段上汽车行驶速度在区间[85,90)内的车辆数和汽车行驶速度超过90km/h的频率分布为()A.300,0.25 B.300,0.35C.60,0.25 D.60,0.35解析:选B由频率分布直方图得,在此路段上汽车行驶速度在区间[85,90)内的频率为0.06×5=0.3,所以在此路段上汽车行驶速度在区间[85,90)内的车辆数为0.3×1000=300(辆),汽车行驶速度超过90km/h的频率为(0.05+0.02)×5=0.35.故选B.12.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层随机抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150C.200 D.250解析:选A由题意得,eq\f(n,3500+1500)=eq\f(70,3500),解得n=100.故选A.13.将A,B,C三种性质的个体按1∶2∶4的比例进行分层随机抽样调查,若抽取的样本量为21,则A,B,C三种性质的个体分别抽取()A.12,6,3 B.12,3,6C.3,6,12 D.3,12,6解析:选C由按比例分配的分层随机抽样的概念,知A,B,C三种性质的个体应分别抽取21×eq\f(1,7)=3,21×eq\f(2,7)=6,21×eq\f(4,7)=12.故选C.14.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据.则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数C.中位数 D.标准差解析:选D只有标准差不变,其中众数、平均数和中位数都加2.故选D.15.统计某校1000名学生的数学测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是()A.20% B.25%C.6% D.80%解析:选D从左至右,后四个小矩形的面积和等于及格率,则及格率是1-10×(0.005+0.015)=0.8=80%.故选D.16.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示:分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.75解析:选C参加面试的频率为eq\f(100,400)=0.25,样本中[80,90]的频率为eq\f(5+1,24)=0.25,由样本估计总体知,分数线大约为80分.故选C.17.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()A.1% B.2%C.3% D.5%解析:选C由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.故选C.18.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分如下:高一:82838593979899高二:88888988979998则对这组数据分析正确的是()A.高一的中位数大,高二的平均数大B.高一的平均数大,高二的中位数大C.高一的平均数、中位数都大D.高二的平均数、中位数都大解析:选A由得分数据可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为eq\f(647,7),所以高二的平均数大.故选A.19.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的eq\f(1,4),且样本量为160,则中间一组的频数为()A.32 B.0.2C.40 D.0.25解析:选A由频率分布直方图的性质,可设中间一组的频率为x,则x+4x=1,∴x=0.2,故中间一组的频数为160×0.2=32.故选A.20.设矩形的长为a,宽为b,若其比满足eq\f(b,a)=eq\f(\r(5)-1,2)≈0.618,则这种矩形称为黄金矩形.黄金矩形给人以美感,常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是()A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析:选A甲批次的样本平均数为eq\f(1,5)×(0.598+0.625+0.628+0.595+0.639)=0.617;乙批次的样本平均数为eq\f(1,5)×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.故选A.二、填空题(本大题共5小题,每小题3分,共15分,请把答案填写在题中横线上)21.一个班组共有20名工人,他们的月工资情况如下:工资xi(元)16001440132012201150980人数ni245522则该班组工人月工资的平均数为________.解析:平均数eq\x\to(x)=(1600×2+1440×4+1320×5+1220×5+1150×2+980×2)÷20=25920÷20=1296.答案:129622.某学生在一门功课的22次考试中,所得分数如下:56626363656668697174767677787979828587889598则该学生该门功课考试分数的极差与中位数之和为________.解析:最大数为98,最小数为56,极差为98-56=42,中位数为76,所以极差与中位数之和为118.答案:11823.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是________人.解析:高三的人数为900-240-260=400(人),所以在高三抽取的人数为eq\f(45,900)×400=20(人).答案:2024.甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,29,31,38,39,51.则甲、乙两名运动员得分的25%分位数分别是________,________.解析:因为两组数据都是12个数,所以12×25%=3,所以甲运动员得分的25%分位数为eq\f(x3+x4,2)=eq\f(20+25,2)=22.5.乙运动员得分的25%分位数为eq\f(x3+x4,2)=eq\f(14+16,2)=15.答案:22.51525.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x,则(0.01+0.015×2+0.025+0.005)×10+x=1,解得x=0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71三、解答题(本大题共3小题,共25分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60]与[60,70]中的学生人数.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=eq\f(1,200)=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2(人).成绩落在[60,70)中的学生人数为3×0.005×10×20=3(人).27.(本小题满分8分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.估计居民月均用水量的中位数.解:由(0.08+0.16+a+0.42+0.50+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.28.(本小题满分9分)某制造商为运动会生产一批直径为40mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.0240.0039.9840.0039.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;分组频数频率eq\f(频率,组距)[39.95,39.97)[39.97,39.99)[39.99,40.01)[40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02mm为合格品,若这批乒乓球的总数为10000只,试根据抽样检查结果估计这批产品的合格只数.解:(1)分组频数频率eq\f(频率,组距)[39.95,39.97)20.105[39.97,39.99)40.2010[39.99,40.01)100.5025[40.01,40.03]40.2010合计20150(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为eq\f(18,20)×100%=90%,∴10000×90%=9000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9000.B卷——面向全国卷高考滚动检测卷(时间:120分钟,满分150分)一、单项选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某台机床加工的1000只产品中次品数的频率分布如下表:次品数01234频率0.50.20.050.20.05则次品数的众数、平均数依次为()A.0,1.1 B.0,1C.4,1 D.0.5,2解析:选A数据xi出现的频率为pi(i=1,2,…,n),则x1,x2,…,xn的平均数为x1p1+x2p2+…+xnpn=1×0.2+2×0.05+3×0.2+4×0.05=1.1.故选A.2.如图所示的几何体的平面展开图是四选项中的()解析:选D选项A、C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选D.3.某校一年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为140的样本,则此样本中男生人数为()A.80 B.120C.160 D.240解析:选A因为男生和女生的比例为560∶420=4∶3,样本量为140,所以应该抽取男生的人数为140×eq\f(4,4+3)=80.故选A.4.某校高二年级有50人参加2019“希望杯”数学竞赛,他们竞赛的成绩制成了如下的频率分布表,根据该表估计该校学生数学竞赛成绩的平均分为()分组[60,70)[70,80)[80,90)[90,100]频率0.20.40.30.1A.70 B.73C.78 D.81.5解析:选C估计该校学生数学竞赛成绩的平均分eq\x\to(x)=65×0.2+75×0.4+85×0.3+95×0.1=78.故选C.5.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为()A.20 B.25C.22.5 D.22.75解析:选C产品的中位数出现在频率是0.5的位置.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x,则由0.1+0.2+0.08×(x-20)=0.5,得x=22.5.故选C.6.如图是某超市一年中各月份的收入与支出(单位:万元)情况的柱形统计图.已知利润为收入与支出的差,即利润=收入-支出,则下列说法正确的是()A.利润最高的月份是2月份,且2月份的利润为40万元B.利润最低的月份是5月份,且5月份的利润为10万元C.收入最少的月份的利润也最少D.收入最少的月份的支出也最少解析:选D利润最高的月份是3月份和10月份,且2月份的利润为40-30=10万元,故A错误;利润最低的月份是8月份,且8月份的利润为5万元,故B错误;收入最少的月份是5月份,但5月份的支出也最少,故5月份的利润不是最少,故C错误,D正确.故选D.7.(2019·山东、湖北部分重点中学高三冲刺考试(二))已知复数z满足|z|=eq\r(2),z+eq\x\to(z)=2(eq\x\to(z)为z的共轭复数)(i为虚数单位),则z=()A.1+i B.1-iC.1+i或1-i D.-1+i或-1-i解析:选C设z=a+bi(a,b∈R),则eq\x\to(z)=a-bi,z+eq\x\to(z)=2a,所以eq\b\lc\{\rc\(\a\vs4\al\co1(a2+b2=2,,2a=2,))得eq\b\lc\{\rc\(\a\vs4\al\co1(a=1,,b=±1,))所以z=1+i或z=1-i.故选C.8.如果数据x1,x2,x3,…,xn的平均数是eq\x\to(x),方差是s2,则3x1+2,3x2+2,…,3xn+2的平均数和方差分别是()A.eq\x\to(x)和s2 B.3eq\x\to(x)和9s2C.3eq\x\to(x)+2和9s2 D.3eq\x\to(x)+2和12s2+4解析:选C3x1+2,3x2+2,…,3xn+2的平均数是3eq\x\to(x)+2,由于数据x1,x2,…,xn的方差为s2,所以3x1+2,3x2+2,…,3xn+2的方差为9s2.故选C.9.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1解析:选B体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.30,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1.故选B.10.从某地区年龄在25~55岁的人员中,随机抽取100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是()A.抽取的100人中,年龄在40~45岁的人数大约为20B.抽取的100人中,年龄在35~45岁的人数大约为30C.抽取的100人中,年龄在40~50岁的人数大约为40D.抽取的100人中,年龄在35~50岁的人数大约为50解析:选A根据频率分布直方图的性质得(0.01+0.05+0.06+a+0.02+0.02)×5=1,解得a=0.04,所以抽取的100人中,年龄在40~45岁的人数大约为0.04×5×100=20,所以A正确;年龄在35~45岁的人数大约为(0.06+0.04)×5×100=50,所以B不正确;年龄在40~50岁的人数大约为(0.04+0.02)×5×100=30,所以C不正确;年龄在35~50岁的人数大约为(0.06+0.04+0.02)×5×100=60,所以D不正确.故选A.二、多项选择题(本大题共3小题,每小题4分,共12分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得4分,选对但不全的得2分,有选错的得0分)11.下列说法正确的是()A.中位数是50%分位数B.数据x1,x2,…,xm的平均数为eq\x\to(x),数据y1,y2,…,yn的平均数为eq\x\to(y),则x1,x2,…,xm,y1,y2,…,yn的平均数为eq\f(m,m+n)eq\x\to(x)+eq\f(n,m+n)eq\x\to(y)C.当样本数据全相等时,其样本方差(标准差)为0D.已知某7个数的平均数为4,方差为2,现加入一个新数据4,则此时8个数的方差s2=2解析:选ABC由百分位数的定义知,A正确;对于B,x1,x2,…,xm,y1,y1,…,yn的平均数为eq\f(x1+x2+…+xn+y1+y2+…+yn,m+n)=eq\f(\i\su(i=1,m,x)i+\i\su(i=1,n,y)i,m+n)=eq\f(m\o(x,\s\up6(-))+n\o(y,\s\up6(-)),m+n)=eq\f(m,m+n)eq\o(x,\s\up6(-))+eq\f(n,m+n)eq\o(y,\s\up6(-)),B正确;选项C显然正确;对于D,因为后来7个数的平均数为4,再加上一个新数据4,这8个数的平均数仍为4,其方差s2=eq\f(7×2+4-42,8)=eq\f(7,4)<2,故D错,故选A、B、C.12.比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是()A.甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值B.甲的数学建模能力指标值优于乙的直观想象能力指标值C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D.甲的数学运算能力指标值优于甲的直观想象能力指标值解析:选AC对于选项A,甲的逻辑推理能力指标值为4,乙的逻辑推理能力指标值为3,所以甲的逻辑推理能力优于乙的逻辑推理能力,故A正确;对于选项B,甲的数学建模能力指标值为3,乙的直观想象能力指标值为5,所以乙的直观想象能力指标值优于甲的数学建模能力指标值,故B错误;对于选项C,甲的六维能力指标值的平均值为eq\f(1,6)(4+3+4+5+3+4)=eq\f(23,6),乙的六维能力指标值的平均值为eq\f(1,6)(5+4+3+5+4+3)=4,eq\f(23,6)<4,故C正确;对于选项D,甲的数学运算能力指标值为4,甲的直观想象能力指标值为5,所以甲的数学运算能力指标值不优于甲的直观想象能力指标值,故D错误.故选A、C.13.2018年11月~2019年11月某工厂工业原油产量的月度走势图如图所示,则以下说法错误的是()A.2019年11月份原油产量约为51.8万吨B.2019年11月份原油产量相对2018年11月增加1.0%C.2019年11月份原油产量比上月减少54.9万吨D.2019年1~11月份原油的总产量不足15000万吨解析:选ABD由题意得,2019年11月份原油的日均产量为51.8吨,则11月份原油产量为51.8×30=1554万吨,故A错误;2019年11月份原油产量的同比增速为-1.0%,原油产量相对2018年11月份减少1.0%,则B错误;10月份原油产量为51.9×31=1608.9万吨,11月份原油产量比上月减少1608.9-1554=54.9万吨,则C正确;1~11月份共334天,而1~11月份日均原油产量都超过50万吨,故1~11月份原油产量的总产量会超过15000万吨,故D错误.故选A、B、D.三、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)14.从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数1231031则这堆苹果中,质量不少于120克的苹果数约占苹果总数的________%.解析:∵质量不少于120克的频数为14,∴频率为eq\f(14,20)×100%=70%.答案:7015.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲____________,乙____________,丙____________.解析:甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数为eq\f(4+6×3+8+9+12+13,8)=8;丙:该组数据的中位数是eq\f(7+9,2)=8.答案:众数平均数中位数16.某企业三月中旬生产A,B,C三种产品共3000件,根据比例分配的分层随机抽样的结果,企业统计员制作了如下的统计表格:产品类型ABC产品数量(件)1300样本量130由于不小心,表格中A,C两种产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本量比C产品的样本量多10,根据以上信息,可得C产品的数量是________件.解析:抽样比130∶1300=1∶10,即每10个产品中取1个个体,又A产品的样本量比C产品的多10,故A产品比C产品多100件,故eq\f(1,2)(3000-1300-100)=800(件)为C产品数量.答案:80017.某同学10次测评成绩的数据如下:2,2,3,4,10+x,10+y,19,19,20,21.已知成绩的中位数为12,若要使标准差最小,则4x+2y的值是________.解析:由题意可知,成绩的中位数为12,所以eq\f(10+x+10+y,2)=12,故x+y=4,平均数为eq\f(1,10)(2+2+3+4+10+x+10+y+19+19+20+21)=11.4.要使标准差最小,即方差最小,只需使(10+x-11.4)2+(10+y-11.4)2最小即可.又(10+x-11.4)2+(10+y-11.4)2=(x-1.4)2+(y-1.4)2≥eq\f(x+y-2.82,2)=0.72,当且仅当x-1.4=y-1.4时取等号,故x=y=2时,标准差最小.此时4x+2y=12.答案:12四、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤)18.(本小题满分12分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到统计图如图所示.(1)求样本中患病者的人数和图中a,b的值;(2)试估计此地区该项身体指标检测值不低于5的从业者的人数.解:(1)根据分层抽样原则,容量为100的样本中,患病者的人数为100×eq\f(3.4,8.5)=40(人).a=1-0.10-0.35-0.25-0.15-0.10=0.05,b=1-0.10-0.20-0.30=0.40.(2)指标检测值不低于5的样本中,有患病者40×(0.30+0.40)=28(人),未患病者60×(0.10+0.05)=9(人),共37人.此地区该项身体指标检测值不低于5的从业者的人数约为eq\f(37,100)×85000=31450(人).19.(本小题满分14分)为加强中学生实践创新能力和团队精神的培养,促进教育教学改革,某市教育局将举办全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表解答下列问题:分组频数频率一[60.5,70.5)a0.26二[70.5,80.5)15c三[80.5,90.5)180.36四[90.5,100.5]bd合计50e(1)求a,b,c,d,e的值;(2)作出频率分布直方图.解:(1)根据题意,得分在[60.5,70.5)内的频数是a=50×0.26=13,在[90.5,100.5]内的频数是b=50-13-15-18=4,在[70.5,80.5)内的频率是c=eq\f(15,50)=0.30,在[90.5,100.5]内的频率是d=eq\f(4,50)=0.08,频率和e=1.00.(2)根据频率分布表作出频率分布直方图,如图所示.20.(本小题满分14分)在射击比赛中,甲、乙两名运动员分在同一小组,给出了他们命中的环数如下表:甲9676277989乙24687897910赛后甲、乙两名运动员都说自己是胜者,如果你是裁判,你将给出怎样的评判?解:为了分析的方便,先计算两人的统计指标如下表所示:平均环数方差中位数命中10环次数甲7470乙75.47.51规则1:平均环数和方差相结合,平均环数高者胜.若平均环数相等,则再看方差,方差小者胜,则甲胜.规则2:平均环数与中位数相结合,平均环数高者胜.若平均环数相等,则再看中位数,中位数大者胜,则乙胜.规则3:平均环数与命中10环次数相结合,平均环数高者胜.若平均环数相等,则再看命中10环次数,命中10环次数多者胜,则乙胜.以上规则都是以平均环数为第一标准,如果比赛规则是看命中7环以上或10环的次数,那么就不需要先看平均环数了.21.(本小题满分14分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆三峡学院《酒店客户关系管理》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《运动生理学》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《体育市场营销》2022-2023学年第一学期期末试卷
- 重庆三峡学院《世界通史》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《数学课程标准与教学设计》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《程序设计实验》2021-2022学年期末试卷
- 重庆财经学院《证券投资技术分析》2023-2024学年第一学期期末试卷
- 2024北京三十五中九年级(上)期中化学(教师版)
- 重庆三峡学院《行政法与行政诉讼法》2021-2022学年期末试卷
- unity程序员岗位职责
- 检验科科室发展规划
- 江苏省各市旅游分析报告
- 初中数学分层教学研究的中期报告
- 杜绝不良行为远离违法犯罪
- 项目式课程与全课程设计
- 项目管理工具与技巧培训
- 2023年中国两轮电动车行业白皮书
- 车间环境温湿度控制
- 小儿重症肺炎查房中的胸腔积液处理
- 记者节与记者职业介绍优秀记者素质课件
- 新生入学校查验预防接种证培训课件
评论
0/150
提交评论