版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八讲非负数时间:2005-9-822:29:00来源:初中数学竞赛辅导(初二分册)佚名所谓非负数,是指零和正实数.非负数的性质在解题中颇有用处.常见的非负数有三种:实数的偶次幂、实数的绝对值和算术根.1.实数的偶次幂是非负数假设a是任意实数,那么a2n≥0(n为正整数),特别地,当n=1时,有a2≥0.2.实数的绝对值是非负数假设a是实数,那么性质绝对值最小的实数是零.`3.一个正实数的算术根是非负数4.非负数的其他性质(1)数轴上,原点和原点右边的点表示的数都是非负数.(2)有限个非负数的和仍为非负数,即假设a1,a2,…,an为非负数,那么a1+a2+…+an≥0.(3)有限个非负数的和为零,那么每一个加数也必为零,即假设a1,a2,…,an为非负数,且a1+a2+…+an=0,那么必有a1=a2=…=an=0.在利用非负数解决问题的过程中,这条性质使用的最多.(4)非负数的积和商(除数不为零)仍为非负数.(5)最小非负数为零,没有最大的非负数.(6)一元二次方程ax2+bx+c=0(a≠0)有实数根的充要条件是判别式△=b2-4ac为非负数.应用非负数解决问题的关键在于能否识别并揭示出题目中的非负数,正确运用非负数的有关概念及其性质,巧妙地进行相应关系的转化,从而使问题得到解决.解得a=3,b=-2.代入代数式得解因为(20x-3)2为非负数,所以-(20x-3)2≤0.①-(20x-3)2≥0.②由①,②可得:-(20x-3)2=0.所以原式=||20±0|+20|=40.说明此题解法中应用了“假设a≥0且a≤0,那么a=0”,这是个很有用的性质.例3x,y为实数,且解因为x,y为实数,要使y的表达式有意义,必有解因为a2+b2-4a-2b+5=0,所以a2-4a+4+b2-2b+1=0,即(a-2)2+(b-1)2=0.(a-2)2=0,且(b-1)2=0.所以a=2,b=1.所以例5x,y为实数,求u=5x2-6xy+2y2+2x-2y+3的最小值和取得最小值时的x,y的值.解u=5x2-6xy+2y2+2x-2y+3=x2+y2+1-2xy+2x-2y+4x2-4xy+yg2+2=(x-y+1)2+(2x-y)2+2.因为x,y为实数,所以(x-y+1)2≥0,(2x-y)2≥0,所以u≥2.所以当时,u有最小值2,此时x=1,y=2.例6确定方程(a2+1)x2-2ax+(a2+4)=0的实数根的个数.解将原方程化为a2x2-2ax+1+x2+a2+3=0,即(ax-1)2+x2+a2+3=0.对于任意实数x,均有(ax-1)2≥0,x2≥0,a2≥0,3>0,所以,(ax-1)2+x2+a2+3恒大于0,故(a2+1)x2-2ax+(a2+4)=0无实根.例7求方程的实数根.分析此题是一个方程,但要求出两个未知数的值,而要确定两个未知数的值,一般需要两个方程.因此,要将方程变形,看能否出现新的形式,以利于解题.解之得经检验,均为原方程的解.说明应用非负数的性质“几个非负数之和为零,那么这几个非负数都为零”,可将一个等式转化为几个等式,从而增加了求解的条件.例8方程组求实数x1,x2,…,xn的值.解显然,x1=x2=…=xn=0是方程组的解.由方程组可知,在x1,x2,…,xn中,只要有一个值为零,那么必有x1=x2=…=xn=0.所以当x1≠0,x2≠0,…,xn≠0时,将原方程组化为将上面n个方程相加得又因为xi为实数,所以经检验,原方程组的解为例9求满足方程|a-b|+ab=1的非负整数a,b的值.解由于a,b为非负整数,所以解得例10当a,b为何值时,方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实数根?解因为方程有实数根,所以△≥0,即△=4(1+a)2-4(3a2+4ab+4b2+2)=4a2+8a+4-12a2-16ab-16b2-8=-8a2-16ab-16b2+8a-4≥0,所以2a2-4ab-4b2+2a-1≥0,-a2+2a-1-a2-4ab-4b2≥0,-(a-1)2-(a+2b)2≥0.因为(a-1)2≥0,(a+2b)2≥0,所以例11实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根.证由得2b=pc+ra,所以△=(2b)2-4ac=(pc+ra)2-4ac=p2c2+2pcra+r2a2-4ac=p2c2-2pcra+r2a2+4pcra-4ac=(pc-ra)2+4ac(pr-1).由pr-1>0,又(pc-ra)2≥0,所以当ac≥0时,△≥0;当ac<0时,也有△=(2b)2-4ac>0.综上,总有△≥0,故原方程必有实数根.例12对任意实数x,比拟3x2+2x-1与x2+5x-3的大小.解用比差法.(3x2+2x-1)-(x2+5x-3)=2x2-3x+2即(3x2+2x-1)-(x2+5x-3)>0,所以3x2+2x-1>x2+5x-3.说明比差法是比拟两个代数式值的大小的常用方法,除此之外,为判定差是大于零还是小于零,配方法也是常用的方法之一,本例正是有效地利用了这两个方法,使问题得到解决.例13a,b,c为实数,设证明:A,B,C中至少有一个值大于零.证由题设有A+B+C=(a2-2a+1)+(b2-2b+1)+(c2-2c+1)+π-3=(a-1)2+(b-1)2+(c-1)2+(π-3).因为(a-1)2≥0,(b-1)2≥0,(c-1)2≥0,π-3>0,所以A+B+C>0.假设A≤0,B≤0,C≤0,那么A+B+C≤0与A+B+C>0不符,所以A,B,C中至少有一个大于零.例14a≥0,b≥0,求证:分析与证明对要求证的不等式两边分别因式分解有由不等式的性质知道,只须证明因为a≥0,b≥0,所以又因为所以原不等式成立.例15四边形四条边长分别为a,b,c,d,它们满足等式a4+b4+c4+d4=4abcd,试判断四边形的形状.解由可得a4+b4+c4+d4-4abcd=0,所以(a4-2a2b2+b4)+(c2-2c2d2+d4)+(2a2b2-4abcd+2c2d2)=0,即(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为a,b,c,d都是实数,所以(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以由于a,b,c,d都为正数,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 停车场收费及一卡通门禁系统施工组织方案
- XX市级智慧图书馆建设方案
- 2023年温州市永嘉县教育系统赴高校提前招聘考试真题
- 2023年临沧市永德县医共体总医院招聘考试真题
- XX公司安全大检查方案,安全生产检查实施方案
- 忠路镇中心幼儿园卫生评比方案
- 小学二年级上学期音乐教学工作总结
- 第三章 学前教育与儿童身心发展的关系课件
- 小学学校饮用水卫生管理制度
- XXXX医院人力资源管理制度
- 设备文件-hpsp0630禾望逆变器说明书
- 辽宁省沈阳市药品零售药店企业药房名单目录
- 2014国际航运函电英语课件-国航第六课时
- 校园文化建设方案(共60张PPT)
- 内镜中心医院感染管理共25张课件
- 2022-2023学年广西南宁市第三中学化学九年级第一学期期中检测模拟试题含解析
- 三年级上册数学课件-8.3 长方形和正方形复习丨苏教版 (共17张PPT)
- 两家公司关系证明公函
- 胸部心脏创伤的急救流程图
- 慢性肾衰竭患者护理查房课件
- 妇女保健科围绝经期保健门诊工作制度
评论
0/150
提交评论