版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省巴中市巴彦淖尔市中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.△ABC外接圆的半径为,圆心为,且,,则的值是
(
)A.2
B.3
C.1
D.0参考答案:B
2.直线被圆所截得的弦长为(
)A.
B.
C.
D.
参考答案:C
解析:,把直线代入得,弦长为3.设x,y满足约束条件,则的最大值是(
)A.﹣4 B.1 C.2 D.4参考答案:C【分析】画出约束条件对应的平面区域,结合图形找出目标函数的最优解,求出目标函数的最大值.【详解】解:画出x,y满足约束条件的平面区域,如图阴影部分,由得,平移直线,由平移可知,当直线过点A时,直线的截距最大,z取得最大值;由,解得,可得,即z的最大值是2.故选:C【点睛】本题考查了线性规划问题,准确作出平面区域是前提,然后再通过直线平移的方法解决问题.4.数列{an}满足a1=1,且对于任意n∈N+的都有an+1=an+a1+n,则等于(
)A.B.C.
D.参考答案:D5.已知,函数与函数的图象可能是参考答案:B略6.已知集合,则下列结论正确的是A. B. C. D.参考答案:C略7.=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i参考答案:C【考点】复数代数形式的混合运算.【分析】复数的分子、分母同乘分母的共轭复数,化简即可.【解答】解:.故选C.【点评】本题考查复数代数形式的运算,是基础题.8.若全集,,则(A)
(B)
(C)
(D)参考答案:B∵,则,选B.
9.的展开式中与的系数相等,则=(A)6
(B)7
(C)8
(D)9参考答案:B本题主要考查二项定理、组合数的应用,以及考查方程的思想、转化的思想,同时考查逻辑思维能力及运算能力.难度较小.方法1由题意可得C35=C36,即C=3C,即=3·,即=,解得n=7.方法2当n=6时,x5项的系数为C35=1456,x6项的系数=C36=729,显然不成立.当n=7时,x5项的系数为C35=5103,x6项的系数=C36=5103,满足条件.10.曲线与直线有两个交点时,实数的取值范围是(
)
A.
B.
C.
D.参考答案:A.试题分析:由题意得,,其表示以为圆心,为半径的圆的上半部分,而表示经过点的一条直线,如下图所示,当直线与圆相切时,,∴,故选A.考点:1.函数与方程;2.数形结合的数学思想.【方法点睛】运用函数图象结合数形结合思想求解问题的类型:1.对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想;2.一些函数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.二、填空题:本大题共7小题,每小题4分,共28分11.已知向量满足,且,则向量与的夹角为
.参考答案:由题cos,,所以
12.已知角θ的终边过点(4,﹣3),则tanθ=,=
.参考答案:,8.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】直接利用任意角的三角函数的定义即可求解tanθ,利用诱导公式,同角三角函数基本关系式化简所求即可计算得解.【解答】解:∵角θ终边上一点P(4,﹣3),∴由三角函数的定义可得tanθ=,∴===8,故答案为:,8.13.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=1.{an}的“差数列”的通项公式为an+1-an=2n,则数列{an}的前n项和Sn=________.参考答案:2n+1-n-214.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为.参考答案:210【考点】等差数列的性质.【专题】计算题.【分析】设前3m项和为x,则30,100﹣30,x﹣100成等差数列,解出x的值,即为所求.【解答】解:等差数列{an}的每m项的和成等差数列,设前3m项和为x,则30,100﹣30,x﹣100成等差数列,故2×70=30+(x﹣100),x=210,故答案为:210.【点评】本题考查等差数列的性质,前n项和的性质,得到30,100﹣30,x﹣100成等差数列,是解题的关键.15.函数(,)部分图像如图所示,且,对于不同的,若,有,则的单调递增区间是____参考答案:()【分析】根据图像可得函数周期T和A的值,以及,且b-a为半周期,由,有,可得角,进而确定函数的解析式,从而求出它的单调递增区间。【详解】由题得函数的最小正周期为,,,则,又,若时,有,那么,即,且,即,解得,则,令,解得,因此函数在区间()上单调递增.【点睛】本题考查通过给出函数的图像及其特定条件,求函数的单调递增区间,是常考题型。16.函数的定义域为
.参考答案:
12、如图,在平行四边形中,对角线与交于点,,则____________。参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)甲、乙两位同学从A、B、C、D…共n(n≥2,n∈N+)所高校中,任选两所参加自主招生考试(并且只能选两所高校),但同学甲特别喜欢A高校,他除选A高校外,再在余下的n﹣1所中随机选1所;同学乙对n所高校没有偏爱,在n所高校中随机选2所.若甲同学未选中D高校且乙选中D高校的概率为.(1)求自主招生的高校数n;(2)记X为甲、乙两名同学中未参加D高校自主招生考试的人数,求X的分布列和数学期望.参考答案:19.(本小题满分14分)如图,直三棱柱中,,,,分别为,的中点.(Ⅰ)求线段的长;(Ⅱ)求证://平面;(Ⅲ)线段上是否存在点,使平面?说明理由.参考答案:(Ⅰ)证明:连接.
因为是直三棱柱,
所以平面,
………………1分
所以.
………………2分
因为,
所以平面.
………………3分因为,,所以.………………4分(Ⅱ)证明:取中点,连接,.
………………5分在△中,因为为中点,所以,.
在矩形中,因为为中点,所以,.
所以,.
所以
四边形为平行四边形,所以.
………………7分
因为平面,平面,
………………8分
所以//平面.
………………9分
(Ⅲ)解:线段上存在点,且为中点时,有平面.………11分证明如下:连接.在正方形中易证.又平面,所以,从而平面.…………12分所以.
………………13分同理可得,所以平面.故线段上存在点,使得平面.
………………14分20.已知函数.(1)讨论函数f(x)的单调性;(2)若“有两个零点、(<),证明:+>2参考答案:21.在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.(Ⅰ)求证:DE∥平面ABC;(Ⅱ)求三棱锥B﹣ACE的体积.参考答案:考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)取AC中点O,连接BO、DO,等边三角形△ACD中,DO⊥AC,结合面面垂直的性质,得D0⊥平面ABC.再过E作EF⊥平面ABC,可以证出四边形DEFO是平行四边形,得DE∥OF,结合线面平行的判定定理,证出DE∥平面ABC;(2)三棱锥E﹣ABC中,判断出EF是平面ABC上的高,最后用锥体体积公式,即可得到三棱锥E﹣ABC的体积.解答: 解:(1)取AC中点O,连接BO、DO,∵△ABC,△ACD都是边长为2的等边三角形,∴BO⊥AC,DO⊥AC;∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC∴DO⊥平面ABC,过E作EF⊥平面ABC,那么EF∥DO,根据题意,点F落在BO上,易求得EF=DO=,所以四边形DEFO是平行四边形,得DE∥OF,∵DE?平面ABC,OF?平面ABC,∴DE∥平面ABC.(2)∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,OD⊥AC,∴OD⊥平面ACB;又∵DO∥EF,∴EF⊥平面BAC,∴三棱锥E﹣ABC的体积V2=×S△ABC×EF=×4=.点评:本题给出两个三棱锥拼接成多面体,求证线面平行并且求它的分割的几何体的体积,着重考查了面面垂直的性质、线面平行的判定和锥体体积公式等知识,属于中档题22.参考答案:解析:(I)设,因为几何体的体积为所以,即即,解得所以的长为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国航空客运产业经营状况及投资规划分析报告
- 2024-2030年中国聚丁二酸丁二醇酯行业产能预测及投资可行性研究报告
- 2024-2030年中国组合曲轴行业供需分析及未来发展策略研究报告
- 鹰课件语文教学课件
- 特殊旅客课件教学课件
- 2024年度建设工程施工合同工期与质量要求
- 2024年度维修保养服务合同
- 2024年城乡供水工程特许经营合同
- 2024年度设备采购合同:甲乙双方在二零二四年就某设备的采购的详细合同条款
- 2024企业人力资源管理与聘用合同详细规定
- 福建师范大学《数字摄像》2023-2024学年第一学期期末试卷
- 期末模拟练习(试题)-2024-2025学年苏教版二年级上册数学
- 2023阿里云ACA大数据复习题题库及答案
- 基于PLC的物料分拣系统设计
- 国开(内蒙古)2024年《创新创业教育基础》形考任务1-3终考任务答案
- 文旅深度融合绩效评估与反馈机制
- 手工木工(技师)技能认定理论考试题库大全-上(单选题)
- 2024-2030年国内水产饲料行业市场发展分析及竞争格局与发展策略研究报告
- 2023年中国铁路国际有限公司招聘笔试真题
- 《护理管理学》期末考试复习题库(含答案)
- 学习通尊重学术道德遵守学术规范课后习题答案
评论
0/150
提交评论