湖北荆门2023-2024学年中考适应性考试数学试题含解析_第1页
湖北荆门2023-2024学年中考适应性考试数学试题含解析_第2页
湖北荆门2023-2024学年中考适应性考试数学试题含解析_第3页
湖北荆门2023-2024学年中考适应性考试数学试题含解析_第4页
湖北荆门2023-2024学年中考适应性考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北荆门2023-2024学年中考适应性考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列交通标志是中心对称图形的为()A. B. C. D.2.如图,立体图形的俯视图是A. B. C. D.3.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游4.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.5.如图,内接于,若,则A. B. C. D.6.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>07.若分式有意义,则的取值范围是()A.; B.; C.; D..8.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A. B.2 C.2 D.49.已知一元二次方程的两个实数根分别是x1、x2则x12x2x1x22的值为()A.-6 B.-3 C.3 D.610.学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正确的是()A.小明 B.小亮 C.小芳 D.没有正确的二、填空题(共7小题,每小题3分,满分21分)11.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.12.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.13.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.14.如图,在△ABC中,DE∥BC,,则=_____.15.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.16.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1 B.0 C.1 D.217.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.三、解答题(共7小题,满分69分)18.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.19.(5分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.求证:△ADF∽△ACG;若,求的值.20.(8分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.(1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长.21.(10分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.22.(10分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?23.(12分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.24.(14分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;

B、是中心对称的图形,但不是交通标志,不符合题意;

C、属于轴对称图形,属于中心对称的图形,符合题意;

D、不是中心对称的图形,不合题意.

故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.2、C【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.3、C【解析】

直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;

B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;

C选项:两个班的最高分无法判断出现在哪个班,错误;

D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;

故选C.【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.4、D【解析】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33当点Q在BC上时,如下图所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=3(1﹣x),∴SΔAPQ=12AP•PQ=12点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.5、B【解析】

根据圆周角定理求出,根据三角形内角和定理计算即可.【详解】解:由圆周角定理得,,,,故选:B.【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.6、B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【解析】

分式的分母不为零,即x-2≠1.【详解】∵分式有意义,∴x-2≠1,∴.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8、C【解析】

连接,交于点设则根据△AMN的面积为4,列出方程求出的值,再计算半径即可.【详解】连接,交于点内切于正方形为的切线,经过点为等腰直角三角形,为的切线,设则△AMN的面积为4,则即解得故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.9、B【解析】

根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.【详解】根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.10、C【解析】试题解析:=====1.所以正确的应是小芳.故选C.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】

设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【详解】设EF=x,

∵四边形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.12、6.28×1.【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】62800用科学记数法表示为6.28×1.故答案为6.28×1.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13、2【解析】

延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【详解】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光线从点A到点B经过的路径长为2.考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键14、【解析】

先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE∥BC,,∴,由平行条件易证△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.15、【解析】

由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案为.【点睛】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.16、D【解析】

根据根的判别式得到关于a的方程,求解后可得到答案.【详解】关于x的方程有两个不相等的实数根,则解得:满足条件的最小整数的值为2.故选D.【点睛】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.17、1-1.【解析】

将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.【详解】将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案为:1-1.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.三、解答题(共7小题,满分69分)18、(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理19、(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.20、(1)见解析;(2)B点经过的路径长为π.【解析】

(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的长为=π,即B点经过的路径长为π.【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.21、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【解析】

(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)△A如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△如图所示,(3,﹣5),(3,﹣1).22、(1)的进价是元,的进价是元;(2)至少购进类玩具个.【解析】

(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论