版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市英山第二中学2022年高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.
参考答案:D略2.若,则“”是“方程表示双曲线”的(
)
A充分不必要条件.
B必要不充分条件.
C充要条件.
D既不充分也不必要条件.参考答案:A略3.已知抛物线的焦点为F,点时抛物线C上的一点,以点M为圆心与直线交于E,G两点,若,则抛物线C的方程是(
)A. B. C. D.参考答案:C【分析】作,垂足为点,根据在抛物线上可得,再根据得到,结合前者可得,从而得到抛物线的方程.【详解】画出图形如图所示作,垂足为点.由题意得点在抛物线上,则,得.①由抛物线的性质,可知,因为,所以.所以,解得.
②,由①②,解得(舍去)或.故抛物线的方程是.故选C.【点睛】一般地,抛物线上的点到焦点的距离为;抛物线上的点到焦点的距离为.4.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x时,,
设a=f(0),b=f(),c=f(3),
则
(
)A
a﹤b﹤c
B
c﹤b﹤a
C
c﹤a﹤b
D
b﹤c﹤a参考答案:C5.已知全集,若,则集合的真子集共有(
)
A.3个
B.4个
C.5个
D.6个参考答案:A略6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.参考答案:A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.设为等比数列的前项和,A.
B.
C.5
D.11参考答案:A略8.设变量满足约束条件,则的取值范围是()A.
B.
C.
D.参考答案:D略9.椭圆的离心率为,右焦点为,方程的两个实根分别为
则点的位置(
).
A.必在圆内
B.必在圆上
C.必在圆外
D.以上三种情况都有可能参考答案:C略10.下列关系属于线性相关关系的是
(
)①父母的身高与子女身高的关系②圆柱的体积与底面半径之间的关系③汽车的重量与汽车每消耗1L汽油所行驶的平均路程④一个家庭的收入与支出
A.①②③
B.②③④
C.①③④
D.①②③④参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.点P(x,y)在圆C:上运动,点A(-2,2),B(-2,-2)是平面上两点,则的最大值____▲____.参考答案:7+212.i是虚数单位,已知虚数的模为,则的取值范围为
.参考答案:
13.过点(1,2)且在两坐标轴上的截距相等的直线的方程.参考答案:2x﹣y=0或x+y﹣3=0【考点】直线的两点式方程.【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,2)代入所设的方程得:a=3,则所求直线的方程为x+y=3即x+y﹣3=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,2)代入所求的方程得:k=2,则所求直线的方程为y=2x即2x﹣y=0.综上,所求直线的方程为:2x﹣y=0或x+y﹣3=0.故答案为:2x﹣y=0或x+y﹣3=014.已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.参考答案:【考点】9K:平面向量共线(平行)的坐标表示;I6:三点共线.【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.【解答】解:向量,∴又A、B、C三点共线故(4﹣k,﹣7)=λ(﹣2k,﹣2)∴k=故答案为15.在△ABC中,若,则△ABC的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA,SB,SC两两垂直,,则四面体S-ABC的外接球半径R=______________.参考答案:【分析】通过条件三条棱两两垂直,可将其补为长方体,从而求得半径.【详解】若两两垂直,可将四面体补成一长方体,从而长方体外接球即为四面体的外接球,于是半径,故答案为.【点睛】本题主要考查外接球的半径,将四面体转化为长方体求解是解决本题的关键.16.要使下面程序能运算出“1+2+…+100”的结果,需将语句“i=i+1”加在________处.程序参考答案:略17.设函数的导函数为,且,则等于
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)数列是等差数列、数列是等比数列。已知,点在直线上。满足。(1)求通项公式、;(2)若,求的值。参考答案:解:(1)把点代入直线得:即:,所以,,又,所以.
…3分又因为,所以.
…5分(2)因为,所以,
?
……7分又,
②…9分
?—②得:
…11分所以,
……12分略19.已知向量=(cos,﹣1),=(sin,cos2),函数f(x)=?+1.(1)若x∈[0,],f(x)=,求cosx的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c﹣a,求角B的取值范围.参考答案:【考点】平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(1)进行数量积的坐标运算,并根据二倍角的正余弦公式及两角差的正弦公式化简便可得出,由f(x)=便可得到,进而求出,根据cosx=即可求出cosx的值;(2)根据正弦定理便可由2bcosA≤2c﹣a得出,而sinC=sin(A+B),带入化简即可得出cosB≥,从而求出B的取值范围.【解答】解:(1)=+1===;∵,∴;又,∴;∴;∴===;(2)根据正弦定理,;∴a=2RsinA,b=2RsinB,c=2RsinC,带入得:;∴;∴;∴;∴;∴;即角B的取值范围为(0,].【点评】考查数量积的坐标运算,二倍角的正余弦公式,两角和差的正余弦公式,以及正弦定理,并熟悉余弦函数的图象.20..(本小题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日
期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差1011131286就诊人数个222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.⑴求选取的2组数据恰好是相邻两个月的概率;⑵若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;⑶若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考答案:20.解:⑴设抽到相邻两个月的数据为事件A因为从6组数据中选取2组数据共有种情况,每种情况都是等可能出现的,其中抽到相邻两个月的数据的情况有5种所以
……4分⑵由数据求得,,由公式求得,再由.
…8分所以关于的线性回归方程为
………………10分⑶当时,,<同样,当时,,<所以,该小组所得线性回归方程是理想的.………12分略21.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:日期4月1日4月7日4月15日4月21日4月30日温差x/°C101113128发芽数y/颗2325302616(1)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:,)参考答案:【考点】回归分析的初步应用;列举法计算基本事件数及事件发生的概率.【分析】(1)用数组(m,n)表示选出2天的发芽情况,用列举法可得m,n的所有取值情况,分析可得m,n均不小于25的情况数目,由古典概型公式,计算可得答案;(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)用数组(m,n)表示选出2天的发芽情况,m,n的所有取值情况有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯钢结构2024年度制作安装承包合同
- 二零二四年度苏州相城区汽车销售公司购销合同
- 二零二四年度互联网金融服务平台技术开发与运营合同
- 店铺责任协议书(2篇)
- 挡土墙结构性安全鉴定合同(2篇)
- 二零二四年度美发店与政府机构之间的优惠政策申请合同
- 二零二四年度租赁合同租金调整机制及维修责任划分
- 拆迁房屋的保证书解析
- 偷钱保证书范本大集合
- 环评服务合同模板
- 英语15选10练习题
- DB4501-T 0008-2023 化妆品行业放心消费单位创建规范
- 锅炉水压试验报告
- 低压开关柜出厂检验报告-5
- 小学体育-轻度损伤的自我处理教学课件设计
- 第一章-公路概论课件
- 基于PLC的水箱温度控制系统
- 第二课堂活动记录表
- 十三项核心制度-上海第十人民医院
- 植物嫁接实验报告
- 七步洗手法 课件
评论
0/150
提交评论