版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市界首崇文中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数有极值,则导函数的图象不可能是
(
)
参考答案:D略2.过点且与直线平行的直线方程是
(
).
.
.
.参考答案:3.已知{an}是等比数列,a2=2,a5=,则a1a2+a2a3+…+anan+1=()A.16(1﹣4﹣n) B.16(1﹣2﹣n) C. D.参考答案:C【考点】数列的求和.【分析】先根据a2=2,a5=,求出公比q,再根据{anan+1}为等比数列,根据求和公式得到答案.【解答】解:∵{an}是等比数列,a2=2,a5=a2q3=2?q3=,∴则q=,a1=4,a1a2=8,∵=q2=,∴数列{anan+1}是以8为首项,为公比的等比数列,∴a1a2+a2a3+a3a4+…+anan+1==(1﹣4﹣n).故选:C.4.直线x+y+1=0的倾斜角为()A.150° B.120° C.60° D.30°参考答案:A【考点】直线的一般式方程.【专题】计算题.【分析】直接利用倾斜角的正切值等于斜率求解.【解答】解:设直线的倾斜角为α(0°<α<180°),则tanα=.所以α=150°.故选A.【点评】本题考查了直线的一般式方程,考查了斜率和倾斜角的关系,是基础题.5.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)3参考答案:A略6.把一颗骰子投掷两次,第一次出现的点数记为m,第二次出现的点数记为n,方程组只有一组解的概率是()A. B. C. D.参考答案:D【考点】古典概型及其概率计算公式.【分析】可得方程组无解的情况共(2,3)(4,6)两种,进而可得方程组只有一组解共有36﹣2=34种情形,由概率公式可得.【解答】解:由题意可得m和n的取值共6×6=36种取法,而方程组无解的情况共(2,3)(4,6)两种,方程组没有无数个解得情形,故方程组只有一组解共有36﹣2=34种情形,∴所求概率为P==故选:D7.已知函数有两个极值点,若,则关于的方
程的不同实根个数为 ()A.3 B.4 C.5 D.6参考答案:A8.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。则不同的搜寻方案有(
)A.40种
B.70种
C.80种
D.100种参考答案:A略9.已知的三个顶点坐标分别为,则的面积为(
)
A.10
B.
C.
5
D.参考答案:C10.随机变量的分布列(1,2,3,4),其中P为常数,则
(
)A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知等比数列{}中,各项都是正数,且,成等差数列,则
参考答案:12.设A,B分别为椭圆的右顶点和上顶点,已知椭圆C过点,当线段AB长最小时椭圆C的离心率为_______.参考答案:【分析】将代入椭圆方程可得,从而,利用基本不等式可知当时,线段长最小,利用椭圆的关系和可求得结果.【详解】椭圆过得:由椭圆方程可知:,又(当且仅当,即时取等号)当时,线段长最小
本题正确结果:【点睛】本题考查椭圆离心率的求解问题,关键是能够利用基本不等式求解和的最小值,根据等号成立条件可得到椭圆之间的关系,从而使问题得以求解.
13.直线ax+y+2=0的倾斜角为45°,则a=.参考答案:﹣1【考点】直线的倾斜角.【分析】根据直线的倾斜角,得出斜率的值,从而求出a的值.【解答】解:当直线ax+y+2=0的倾斜角为45°时,直线l的斜率k=tan45°=1;∴﹣a=1,解得a=﹣1,故答案为:﹣1【点评】本题考查了利用直线的倾斜角求直线斜率的应用问题,是基础题目.14.设向量,且,则实数x的值是_______;参考答案:2【分析】由条件利用两个向量共线的性质求得x的值.【详解】解:∵,,且,∴2x=,即x=2故答案为:2【点睛】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于基础题.15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.参考答案:1和3【考点】F4:进行简单的合情推理.【答案】【解析】【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.【点评】考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16.5名大学生分配到3个公司实习,每个公司至少一名。则不同的分配方案有
(用数字作答)参考答案:150略17.已知三角形的三个顶点,,.则(1)过点的中线长为;(2)过点的中线长为;(3)过点的中线长为.参考答案:;;三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知△ABC的内角A,B,C所对的边分别为a,b,c,=.(1)求角A的大小;(2)若△ABC为锐角三角形,求的范围.参考答案:【考点】正弦定理.【分析】(1)由正弦定理化简已知的式子后,由余弦定理求出cosA的值,由内角的范围和特殊角的三角函数值求出角A的值;(2)由(1)和内角和定理表示出B,由锐角三角形的条件列出不等式组,求出C的范围,由正弦定理、两角差的正弦公式、商的关系化简后,由正切函数的图象与性质求出答案.【解答】解:(1)由题意知,,由正弦定理得,,化简得,,即,由余弦定理得,cosA==,又0<A<π,则A=;(2)由(1)得A=,又A+B+C=π,则B=﹣C,因为△ABC是锐角三角形,所以,解得,由正弦定理得,====,由得,tanC>1,即,所以,即的范围是.【点评】本题考查了正弦定理、余弦定理,两角差的正弦公式,内角和定理,商的关系等,以及正切函数的图象与性质,考查转化思想,化简、变形能力.19.(本小题满分15分)在如图所示的四棱锥中,已知PA⊥平面ABCD,,,,为的中点.(1)求证:MC∥平面PAD;(2)求直线MC与平面PAC所成角的余弦值;(3)求二面角的平面角的正切值.参考答案:解:(Ⅰ)如图,取PA的中点E,连接ME,DE,∵M为PB的中点,∴EM//AB,且EM=AB.
又∵,且,∴EM//DC,且EM=DC
∴四边形DCME为平行四边形,则MC∥DE,又平面PAD,平面PAD所以MC∥平面PAD--------------------------4分(Ⅱ)取PC中点N,则MN∥BC,∵PA⊥平面ABCD,∴PA⊥BC,又,∴BC⊥平面PAC,则MN⊥平面PAC所以,为直线MC与平面PAC所成角,------------------9分(Ⅲ)取AB的中点H,连接CH,则由题意得又PA⊥平面ABCD,所以,则平面PAB.所以,过H作于G,连接CG,则平面CGH,所以则为二面角的平面角.则,故二面角的平面角的正切值为----------------------------------------15分20.在平面直角坐标系xOy中,已知直线的参数方程为(为参数),直线与抛物线交于两点,求线段的长.参考答案:解:直线的参数方程为化为普通方程为,抛物线方程:,联立可得,
∴交点,,故.略21.已知直线过点,且被两平行直线与截得的线段长为,求直线的方程.w参考答案:
解析:。设的斜率为,则,故所求的直线方程为:
22.
某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.(1)求的值及样本中男生身高在[185,195](单位:cm)的人数.(2)假设一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.(3)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.参考答案:(1)由题意:,
-------------2分身高在的频率为0.1,人数为4.
------------4分(2)设样本中男生身高的平均值为,则:
---------6分,所以,估计该校全体男生的平均身高为.
---------8分(3)在样本中,身高在(单位:cm)内的男生有2人,设为B和C,身高在(单位:cm)内的男生有4人,设为D、E、F、G,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《材料工程测试技术》2021-2022学年第一学期期末试卷
- 光伏组件销售合同范本
- 果园分包合同书模板
- 合同编第十九条法条解读
- 2024上海市电视广播广告发布合同(示范文本版)
- 2024化妆品品牌加盟合同
- 2024建筑委托合同协议
- 沈阳理工大学《Java程序设计基础》2021-2022学年期末试卷
- 2024表演场地租赁合同范本
- 2024开店双方入股合同协议范文
- 中国湿疹诊疗指南
- LTC流程介绍完整版
- 饲料加工系统粉尘防爆安全规程
- 一年级上册美术课件-第11课-花儿寄深情-▏人教新课标
- 植物的象征意义
- 夏商周考古课件 第5章 西周文化(1、2节)
- 二年级上册美术教案-7. 去远航 -冀教版
- 装配图画法及要求课件
- 翻译实习教学大纲
- 心力衰竭-英文版课件
- 邀请回国探亲邀请函范本
评论
0/150
提交评论