四川省成都市树德协进中学高二数学文模拟试题含解析_第1页
四川省成都市树德协进中学高二数学文模拟试题含解析_第2页
四川省成都市树德协进中学高二数学文模拟试题含解析_第3页
四川省成都市树德协进中学高二数学文模拟试题含解析_第4页
四川省成都市树德协进中学高二数学文模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市树德协进中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A.S<8? B.S<12? C.S<14? D.S<16?参考答案:B【考点】程序框图.【专题】图表型;算法和程序框图.【分析】由框图给出的赋值,先执行一次运算i=i+1,然后判断得到的i的奇偶性,是奇数执行S=S+2*i,是偶数执行S=S+i,然后判断S的值是否满足判断框中的条件,满足继续从i=i+1执行,不满足跳出循环,输出i的值.【解答】解:框图首先给变量S和i赋值S=0,i=1,执行i=i+1=2,判断2是奇数不成立,执行S=2;判断框内条件成立,执行i=2+1=3,判断3是奇数成立,执行S=2×3+2=8;判断框内条件成立,执行i=3+1=4,判断4是奇数不成立,执行S=8+4=12;此时在判断时判断框中的条件应该不成立,输出i=4.而此时的S的值是12,故判断框中的条件应S<12.若是S<8,输出的i值等于3,与题意不符.故选:B.【点评】本题考查了程序框图,考查了循环结构,内含条件结构,整体属于当型循环,解答此题的关键是思路清晰,分清路径,属基础题.2.在独立性检验中,统计量有两个临界值:3.841和6.635;当>3.841时,有95%的把握说明两个事件有关,当>6.635时,有99%的把握说明两个事件有关,当3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的=20.87,根据这一数据分析,认为打鼾与患心脏病之间(

)A.有95%的把握认为两者有关 B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关

D.约有99%的打鼾者患心脏病参考答案:C略3.有8件产品,其中3件是次品,从中任取3件,若X表示取得次品的件数,则(

)A.

B.

C.

D.参考答案:B根据题意,

4.函数f(x)=lnx-x在区间(0,e]上的最大值为()A.-e

B.1-e

C.-1

D.0参考答案:C5.若某空间几何体的三视图如图所示,则该几何体的体积是()A.1

B.

C.

D.2参考答案:C6.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为,,则(

).

A.,

B.,

C.,

D.,参考答案:B略7.点P为正四面体ABCD的棱BC上任意一点,则直线AP与直线DC所成角的范围是()A. B. C. D.参考答案:C【考点】异面直线及其所成的角.【分析】由题意,P在C处,直线AP与直线DC所成角是,P在B处,直线AP与直线DC所成角是,可得直线AP与直线DC所成角的范围.【解答】解:由题意,P在C处,直线AP与直线DC所成角是,P在B处,直线AP与直线DC所成角是,∴直线AP与直线DC所成角的范围是[,].故选:C.8.若a∈R,则“a<﹣1”是“|a|>1”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:由|a|>1得a>1或a<﹣1,即“a<﹣1”是“|a|>1”的充分不必要条件,故选:A.9.已知数列{an}是等差数列,a1=tan,a5=13a1,设Sn为数列{(﹣1)nan}的前n项和,则S2016=()A.2016 B.﹣2016 C.3024 D.﹣3024参考答案:C【考点】数列的求和.【分析】利用等差数列的通项公式与“分组求和”方法即可得出.【解答】解:设等差数列{an}的公差为d,∵a1=tan=1,a5=13a1,∴a5=13=1+4d,解得d=3.∴an=1+3(n﹣1)=3n﹣2.∴(﹣1)2k﹣1a2k﹣1+(﹣1)2ka2k=﹣3(2k﹣1)+2+3×2k﹣2=3.设Sn为数列{(﹣1)nan}的前n项和,则S2016=3×1008=3024.故选:C.10.已知双曲线C:(a>0,b>0)的焦距为10,点P(2,l)在C的一条渐近线上,则C的方程为A.

B.C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知f(n+1)=f(n)-(n∈N*)且f(2)=2,则f(101)=_______.

参考答案:略12.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=

.参考答案:1﹣2i【考点】复数代数形式的加减运算.【分析】设复数z=a+bi,(a、b是实数),则=a﹣bi,代入已知等式,再根据复数相等的含义可得a、b的值,从而得到复数z的值.【解答】解:设z=a+bi,(a、b是实数),则=a﹣bi,∵2z+=3﹣2i,∴2a+2bi+a﹣bi=3﹣2i,∴3a=3,b=﹣2,解得a=1,b=﹣2,则z=1﹣2i故答案为:1﹣2i.13.圆的圆心的极坐标是

;半径是

.参考答案:;1.【考点】Q4:简单曲线的极坐标方程.【分析】把方程两边同时乘以ρ,转化为直角坐标方程,求出圆心的直角坐标和半径,再结合,x=ρcosθ求圆心的极坐标.【解答】解:由,得,∴,即.则圆心的直角坐标为(),半径为1.则,cosθ=,∵()在第一象限,∴θ=.∴圆心的极坐标是(1,).故答案为:;1.14.已知点P在椭圆+=1上,F1,F2是椭圆的焦点,若为钝角,则P点的横坐标的取值范围是

.参考答案:(-3,3)15.已知方程表示椭圆,则的取值范围为___________.参考答案:略16.若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.参考答案:x=﹣2【考点】K7:抛物线的标准方程.【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣217.已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,则不等式g(x)>h(0)的解集是

.参考答案:(1+,+∞)【考点】3L:函数奇偶性的性质;36:函数解析式的求解及常用方法.【分析】根据题意,有g(x)+h(x)=2x①,结合函数奇偶性的性质可得f(﹣x)=﹣g(x)+h(x)=2﹣x②,联立①②解可得h(x)与g(x)的解析式,进而可以将g(x)>h(0)转化为(2x﹣2﹣x)>(20+2﹣0)=1,变形可得2x﹣2﹣x>2,解可得x的取值范围,即可得答案.【解答】解:根据题意,f(x)=2x且f(x)=g(x)+h(x),即g(x)+h(x)=2x,①则有f(﹣x)=g(﹣x)+h(﹣x)=2﹣x,又由g(x)为奇函数,h(x)为偶函数,则f(﹣x)=﹣g(x)+h(x)=2﹣x,②联立①②,解可得h(x)=(2x+2﹣x),g(x)=(2x﹣2﹣x),不等式g(x)>h(0)即(2x﹣2﹣x)>(20+2﹣0)=1,即2x﹣2﹣x>2,解可得2x>1+,则有x>log2(1+),即不等式g(x)>h(0)的解集是(1+,+∞);故答案为:(1+,+∞).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知命题p:对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立;命题q:不等式x2+ax+2<0有解.若p是真命题,q是假命题,求a的取值范围.参考答案:【考点】命题的真假判断与应用;一元二次不等式的应用.【专题】计算题.【分析】由已知可得∈[2,3],而由不等式a2﹣5a﹣3≥恒成立可得a2﹣5a﹣3≥3,解不等式可求a的范围,即P的范围;由不等式x2+ax+2<0有解,可得△=a2﹣8>0,可求q的范围,结合p真,q假可求【解答】解:∵m∈[﹣1,1],∴∈[2,3].∵对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立,可得a2﹣5a﹣3≥3,∴a≥6或a≤﹣1.故命题p为真命题时,a≥6或a≤﹣1.又命题q:不等式x2+ax+2<0有解,∴△=a2﹣8>0,∴a>2或a<﹣2.从而命题q为假命题时,﹣2≤a≤2,∴命题p为真命题,q为假命题时,a的取值范围为﹣2≤a≤﹣1.【点评】本题主要考察了复合命题的真假判定的应用,解题的关键是根据已知条件分别求解p,q为真时的范围.19.等比数列,,且,是和的等差中项.(1)求数列的通项公式;(2)若数列满足(),求数列的前项和.参考答案:略20.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,和的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)

参考答案:⑴⑵在时取极大值,也即造价预算最大值为()万元.解析:解:⑴因为最高点B(-1,4),所以A=4;又,所以,因为

……5分代入点B(-1,4),,又;

……8分⑵由⑴可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元,所以步行道造价预算,.

……13分由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分略21.如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点.(1)求证:EF∥平面A′BC;(2)求直线A′B与平面A′DE所成角的正切值.参考答案:(1)证明:取A′C的中点M,连结MF,MB,则FM∥DC,且FM=DC,又EB∥DC,且EB=DC,从而有FM綊EB,所以四边形EBMF为平行四边形,故有EF∥MB,又EF?平面A′BC,MB?平面A′BC,所以EF∥平面A′BC.(2)过B作BO垂直于DE的延长线,O为垂足,连结A′O,因为平面A′DE⊥平面BCDE,且平面A′DE∩平面BCDE=DE,所以BO⊥平面A′DE,所以∠BA′O就是直线A′B与平面A′DE所成的角.过A′作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论