随机决策分析方法_第1页
随机决策分析方法_第2页
随机决策分析方法_第3页
随机决策分析方法_第4页
随机决策分析方法_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

随机决策分析方法12007年12月27日

第十六章随机性决策分析方法22024年5月5日随机性决策问题的基本概念;

效用函数的概念;

效用与风险的关系;

随机优势与效用函数的关系;案例分析:彩票中的数学问题。第2页,共46页,2024年2月25日,星期天

一、问题的引入-彩票与数学32024年5月5日

彩票中的数学知多少?你们了解彩票吗?你们买过彩票吗?你们了解彩票的规则吗?No,Idon’tknow!请问几个问题:(1)博彩有规律可寻吗?(2)现行的各种彩票方案中奖的可能性有多大?(3)现行的彩票方案合理吗?哪种方案“好”?(4)我们应该如何看待彩票?中国的彩票业还有多大的发展空间?我想应该有规律吧!啊!有这么悬乎吗?第3页,共46页,2024年2月25日,星期天42024年5月5日

一、问题的引入-彩票与数学

“彩票中的数学”问题(CUMCM2002-B)近年来“彩票飓风”席卷中华大地,巨额诱惑使越来越多的人加入到“彩民”的行列,目前流行的彩票主要有“传统型”和“乐透型”两种类型。“传统型”采用“10选6+1”方案:中奖等级10选6+1(6+1/10)基本号码特别号码说明一等奖abcdefg选7中(6+1)二等奖abcdef

选7中(6)三等奖abcdeXXbcdef

选7中(5)四等奖abcdXXXbcdeXXXcdef选7中(4)五等奖abcXXXXbcdXXXXcdeXXXXdef选7中(3)六等奖abXXXXXbcXXXXXcdXXXXXdeXXXXXef选7中(2)第4页,共46页,2024年2月25日,星期天52024年5月5日

一、问题的引入-彩票与数学

“彩票中的数学”问题(CUMCM2002-B)“乐透型”有多种不同的形式,比如“33选7”的方案和“36选6+1”的方案,中奖等级33选7(7/33)36选6+1(6+1/36)基本号码特别号码说明基本号码特别号码说明一等奖●●●●●●●选7中(7)●●●●●●★选7中(6+1)二等奖●●●●●●○

★选7中(6+1)●●●●●●

选7中(6)三等奖●●●●●●○选7中(6)●●●●●○★选7中(5+1)四等奖●●●●●○○★选7中(5+1)●●●●●○选7中(5)五等奖●●●●●○○选7中(5)●●●●○○★选7中(4+1)六等奖●●●●○○○★选7中(4+1)●●●●○○选7中(4)七等奖●●●●○○○选7中(4)●●●○○○★选7中(3+1)第5页,共46页,2024年2月25日,星期天62024年5月5日

一、问题的引入-彩票与数学“彩票中的数学”问题(CUMCM2002-B)要解决的问题:(1)根据这些方案的具体情况,综合分析各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素评价各方案的合理性。(2)设计一种“更好”的方案及相应的算法,并据此给彩票管理部门提出建议。(3)给报纸写一篇短文,供彩民参考。第6页,共46页,2024年2月25日,星期天72024年5月5日

二.随机性决策的基本概念

随机性决策问题包含两个方面:决策人所采取的行动方案(决策);问题的自然状态(状态);

基本特点:后果的不确定性和后果的效用。

后果的不确定性:由问题的随机性,使问题会出现什么状态的不确定性,决策人做出决策后会出现后果的不确定性。后果的效用:后果价值的量化。由后果的不确定性,对于不同决策后果的效用是不同的。第7页,共46页,2024年2月25日,星期天82024年5月5日

1、主观概率

二.随机性决策的基本概念

随机性决策问题后果的不确定性是由状态的不确定性引起的,状态的不确定性不能通过在相同条件下的大量重复试验来确定其概率分布。实际中只能由决策人主观地做出估计,称其为主观概率。

主观概率遵循客观概率应该遵循的假设、公理、性质等,客观概率的所有逻辑推理方法均适用于主观概率。

设定主观概率的方法:主观先验分布法、无信息先验分布法、极大熵先验分布法和利用过去数据设定先验分布法等。第8页,共46页,2024年2月25日,星期天客观(Objective)概率:上述三种定义的概率是在多次重复试验(随机试验)中,随机事件A发生的可能性的大小的度量,称为客观概率。主观(Subjective)概率:在实际管理决策中,许多事件的发生概率是无法通过随机试验获得的,或条件不允许,或事件本身不允许。因此需要一种方法来人为设定事件发生的概率,称为主观概率。主观概率是人们根据经验、各方面的知识以及了解到的客观情况进行分析、推理、综合判断,对特定事件发生的可能性的信念(或意见、看法)的度量(Savage,1954)。公理化定义:E是随机事件,S是E的样本空间,对E的每一事件A,对应有确定的实数p(A),若p(A)满足:①非负性:p(A)≥0;②规范性:p(S)=1;③列可加性:对两两不相容事件Ak,有p(∪kAk)=Σkp(Ak)。(Ai∩Aj=Φ,i≠j)第9页,共46页,2024年2月25日,星期天主观概率—先验分布与先验假设先验分布(PriorDistribution):根据先验信息所确定的概率分布叫先验分布,获得先验分布是贝叶斯分析的基础。决策中先验分布的获得具有高度的主观性。先验假设:为使先验分布估计规范化,需要做一定的假设。连通性假设:指事件A和事件B发生的可能性是可比的,即p(A)>p(B),p(A)~p(B),p(A)<p(B)必有一个成立。传递性假设:若对事件A、B、C,有p(A)>p(B),p(B)>p(C),则p(A)>p(C)。(满足连通性和传递性的二元关系才能构成完全序)部分与全体关系假设:若事件A是事件B的一部分,则p(B)≥p(A)。第10页,共46页,2024年2月25日,星期天主观概率—先验分布估计:比较法比较法1-离散型(对事件发生的各种状态加以比较确定相对似然率)某气象专家对当年的气候状况进行评估,认为当年气候正常(

1)与受灾的可能性之比约为3:2;如果受灾,则水灾(

2)、旱灾(

3)的可能性相当。据此,我们可推算出当年气候状况的先验分布:

(

1)+

(

2)+

(

3)=1;

(

1)/(

(

2)+

(

3))=3/2;

(

2)=

(

3)解得:

(

1)=0.6,

(

2)=0.2,

(

3)=0.2第11页,共46页,2024年2月25日,星期天主观概率—先验分布估计:比较法比较法2-连续型离散化:同直方图法比较赋值选择一个似然率最大的子区间

k作为基准,设其相对似然率为Rk,然后给出其他各区间i相对于k的似然率Ri,则(i)=Ri/ΣRi由决策者给出每两个子区间似然率的比例关系:rij=(i)/(j),然后计算出每个状态i的似然率(i)。变换拟合:同直方图法第12页,共46页,2024年2月25日,星期天主观概率—先验分布估计:打赌法打赌法(离散型)设打赌者(A)的个人财产为W。设事件E发生时A获得收入为p,(p<<W,0<p<1),不发生时A获得的收入为1-p。调整p值使A感觉无论事件E是否发生,其收入基本相同。则事件E发生的可能性

(E)=1-p。第13页,共46页,2024年2月25日,星期天主观概率—先验分布估计:直方图法直方图法(适合于自然状态在实轴某个区间连续取值)区间离散化:把的取值范围划分为若干子区间1…

n赋值:估计每个区间的似然率(i),据此作出直方图变换:将直方图拟合为概率分布函数F(x)=Σ≤x

()不足之处:区间数n难以确定似然率(i)估计困难F(x)通常有较大的尾部误差第14页,共46页,2024年2月25日,星期天主观概率—先验分布估计:分位点法区间对分法(分位点法)-连续型确定事件不可能发生的临界状态取值(如某地区人口出生率不可能低于9‰,但也不可能超过18‰);求中位数:当状态取值为此值时,大于或小于此值的状态出现的概率相等(如某地区人口出生率的中位数为12.5‰);确定上下四分位点;确定八分位点(一般仅取到八分位点)。第15页,共46页,2024年2月25日,星期天第16页,共46页,2024年2月25日,星期天主观概率—先验分布估计:分布函数法与给定形式的分布函数相匹配(最常用也容易滥用)[Matlab工具箱:StatisticsToolbox/ProbabilityDistributions]均匀分布(连续型):如果随机变量落在某个区间(a,b)中任意等长度的子区间内的可能性相等,则它服从均匀分布,均匀分布的概率密度函数为:[Matlab函数:unifpdf(x,a,b),unifit(DATA)]ab第17页,共46页,2024年2月25日,星期天主观概率—先验分布估计:分布函数法二项分布:(离散型)每次随机试验中事件A出现的概率为p,n次独立试验中事件A出现k次的概率服从二项分布:[Matlab函数:binopdf(k,n,p),binofit(k,n)]泊松分布:(离散型)每次随机试验中事件A出现的概率为p,n次(n→∞,但n*p=

为常数)独立试验中事件A出现k次的概率服从泊松分布:[Matlab函数:poisspdf(k,

),poissfit(DATA)]第18页,共46页,2024年2月25日,星期天第19页,共46页,2024年2月25日,星期天主观概率—先验分布估计:分布函数法正态分布(高斯分布):(连续型)若连续型随机变量

的概率密度函数为:

则称随机变量服从参数为、2的正态分布[Matlab函数:normpdf(x,

,

),normfit(DATA)]

。参见相关统计学书籍,看看还有哪些分布函数可供选择使用?第20页,共46页,2024年2月25日,星期天第21页,共46页,2024年2月25日,星期天222024年5月5日

2、随机性决策的效用函数

二.随机性决策的基本概念第22页,共46页,2024年2月25日,星期天232024年5月5日

2、随机性决策的效用函数第23页,共46页,2024年2月25日,星期天242024年5月5日效用函数的定义:

2、随机性决策的效用函数第24页,共46页,2024年2月25日,星期天252024年5月5日

2、随机性决策的效用函数第25页,共46页,2024年2月25日,星期天262024年5月5日

2、随机性决策的效用函数第26页,共46页,2024年2月25日,星期天272024年5月5日

实际中的决策问题对决策人的决策往往是效益和风险并存。不同的决策人对待风险的态度可分为厌恶型、中立型和喜好型。

3、效用与风险的关系

二.随机性决策的基本概念问题:决策人对待这一风险的态度是什么呢?第27页,共46页,2024年2月25日,星期天282024年5月5日

3、效用与风险的关系厌恶型:

决策人认为冒此风险的期望盈利只等价于比它低的不冒风险的盈利。喜好型:

对待风险的态度与厌恶型相反的。中立型:介于二者之间的,即决策人认为这和不冒任何风险的另一行为盈利a元等价。这三种不同的态度可以反映在效用函数上就是凹函数,线性函数和凸函数。第28页,共46页,2024年2月25日,星期天292024年5月5日

3、效用与风险的关系第29页,共46页,2024年2月25日,星期天302024年5月5日

实际中,有的效用函数曲线呈S型,即在后果的范围内,决策人会从厌恶风险变为喜好风险。

3、效用与风险的关系

(1)反映了决策人的财产从小到大,对待风险的态度从喜好到厌恶的改变。(2)反映了决策人的财产从损失到盈利的增加,对待风险的态度从喜好到厌恶的变化。第30页,共46页,2024年2月25日,星期天312024年5月5日

4、损失函数与风险函数的关系

二.随机性决策的基本概念第31页,共46页,2024年2月25日,星期天322024年5月5日4、损失函数与风险函数的关系第32页,共46页,2024年2月25日,星期天332024年5月5日

5、随机优势与效用函数

二.随机性决策的基本概念

随机优势法:在有价证券问题的研究中常用的一种在一定风险的情况下确定决策的方法。随机优势法常用的效用函数有三种:第33页,共46页,2024年2月25日,星期天342024年5月5日

5、随机优势与效用函数

(1)递增的效用函数

第34页,共46页,2024年2月25日,星期天352024年5月5日

5、随机优势与效用函数

(1)递增的效用函数

这种类型的效用函数仅能反映出财富与风险的关系,但不能反映出决策人对待风险的态度。第35页,共46页,2024年2月25日,星期天362024年5月5日

5、随机优势与效用函数

(2)递增的凹效用函数

第36页,共46页,2024年2月25日,星期天372024年5月5日

5、随机优势与效用函数

(2)递增的凹效用函数

事实上,可以证明:第37页,共46页,2024年2月25日,星期天

(3)递减的厌恶风险的效用函数382024年5月5日

5、随机优势与效用函数

第38页,共46页,2024年2月25日,星期天392024年5月5日

(3)递减的厌恶风险的效用函数

5、随机优势与效用函数

第39页,共46页,2024年2月25日,星期天402024年5月5日1、问题的提出三、案例分析:彩票中的数学问题要解决的问题:(1)根据所给方案的具体情况,综合分析各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素评价各方案的合理性。(2)设计一种“更好”的方案及相应的算法,并据此给彩票管理部门提出建议。(3)给报纸写一篇短文,供彩民参考。第40页,共46页,2024年2月25日,星期天412024年5月5日

2、问题的分析三、案例分析:彩票中的数学问题

评价一个方案的优劣,或合理性如何,主要取决于彩票公司和彩民两方面的利益。事实上,公司和彩民各得销售总额的50%是确定的,双方的利益主要就取决于销售总额的大小,即双方的利益都与销售额成正比。问题是怎样才能有利于销售额的增加?即公司采用什么样的方案才能吸引广大的彩民积极踊跃购买彩票?

第41页,共46页,2024年2月25日,星期天422024年5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论