天津北辰区天辰高级中学高三数学理测试题含解析_第1页
天津北辰区天辰高级中学高三数学理测试题含解析_第2页
天津北辰区天辰高级中学高三数学理测试题含解析_第3页
天津北辰区天辰高级中学高三数学理测试题含解析_第4页
天津北辰区天辰高级中学高三数学理测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津北辰区天辰高级中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知x、y满足约束条件,则z=2x+4y的最小值为(

) A.﹣6 B.5 C.10 D.﹣10参考答案:A考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.解答: 解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最小,此时z最小,由,解得,即A(3,﹣3),此时z=2×3+4×(﹣3)=﹣6,故选:A点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.2.某地举办科技博览会,有3个场馆,现将24个志愿者名额分配给这3个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有(

)种A.222

B.253

C.276

D.284参考答案:A3.已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则(n∈N+)的最小值为()A.4 B.3 C.2﹣2 D.参考答案:A【考点】等差数列的性质.【分析】由题意得(1+2d)2=1+12d,求出公差d的值,得到数列{an}的通项公式,前n项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a1=1,a1、a3、a13成等比数列,∴(1+2d)2=1+12d.得d=2或d=0(舍去),∴an=2n﹣1,∴Sn==n2,∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A.4.设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是

A.

B.

C.

D.参考答案:D5.函数f(x)的定义域为D,若对于任意,当时,都有,则称函数在D上为非减函数.

设函数f(x)在0,1上为非减函数,且满足以下三个条件:①;②;③,则等()A.

B.

C.1

D.

参考答案:D6.若(为实常数)在区间上的最小值为-4,则a的值为(A)4

(B)-3

(C)-4

(D)-6

参考答案:答案:C7.若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是

(A)3

(B)5

(C)

(D)参考答案:【解析】D解析:本小题主要考查双曲线的性质及离心率问题。依题不妨取双曲线的右准线,则左焦点到右准线的距离为,左焦点到右准线的距离为,依题即,∴双曲线的离心率8.已知球为棱长为1的正方体的内切球,则平面截球的截面面积为(

A.

B.

C.

D.

参考答案:C9.函数是偶函数,且时,,若,则a的取值范围是(

)A.(-∞,0)∪(2,+∞)

B.(-∞,0)∪(1,2)

C.(-∞,0)

D.(-∞,0)∪(3,+∞)参考答案:A10.如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是()A.()B.(1,2)C.(,1)D.(2,3)参考答案:考点: 函数零点的判定定理.分析: 由二次函数图象的对称轴确定a的范围,据g(x)的表达式计算g()和g(1)的值的符号,从而确定零点所在的区间.解答: 解:由函数f(x)=x2+ax+b的部分图象得0<b<1,f(1)=0,从而﹣2<a<﹣1,而g(x)=lnx+2x+a在定义域内单调递增,g()=ln+1+a<0,g(1)=ln1+2+a=2+a>0,∴函数g(x)=lnx+f′(x)的零点所在的区间是(,1);故选C.二、填空题:本大题共7小题,每小题4分,共28分11.设,则二项式展开式中的第4项为_______.参考答案:-128012.已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则|BF|=.参考答案:10【考点】K8:抛物线的简单性质.【分析】由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的距离公式可求得.【解答】解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,﹣=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴=,即m+2=2﹣3,解得:=2或(舍去),∴切点B(8,8),又F(2,0),∴|BF|==10.故答案为:10.13.定义在R上的函数f(x),对任意x,y满足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,那么下面四个式子:①f(1)+2f(1)+…+nf(1);②;③n(n+1);④n(n+1)f(1).其中与f(1)+f(2)+…+f(n)(n∈N*)相等的是.参考答案:①②③【考点】抽象函数及其应用.【分析】由已知,定义在R上的函数f(x),对任意x,y满足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,依次对下面四个结论进行判断,【解答】解:由定义知f(1)+f(2)+…+f(n)=f(1)+2f(1)+…+nf(1)==f(1)=n(n+1);故①②③正确,④不正确;故应填①②③.14.设数列前项和,且,为常数列,则

.参考答案:考点:1.数列递推式;2.裂项相消求和.【方法点睛】裂项相消在使用过程中有一个很重要得特征,就是能把一个数列的每一项裂为两项的差,其本质就是两大类型类型一:型,通过拼凑法裂解成;类型二:通过有理化、对数的运算法则、阶乘和组合数公式直接裂项型;该类型的特点是需要熟悉无理型的特征,对数的运算法则和阶乘和组合数公式。无理型的特征是,分母为等差数列的连续两项的开方和,形如型,常见的有①;②对数运算本身可以裂解;③阶乘和组合数公式型要重点掌握和.15.已知棱长为1的立方体ABCD﹣A1B1C1D1,则从顶点A经过立方体表面到达正方形CDD1C1中心M的最短路线有

条.参考答案:2【考点】多面体和旋转体表面上的最短距离问题.【分析】由题意,经过边DD1或DC时,路线最短,即可得出结论.【解答】解:由题意,经过边DD1或DC时,路线最短,有2条.故答案为:2.16.如图,四面体OABC的三条棱OA、OB、OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题. ①不存在点D,使四面体ABCD有三个面是直角三角形 ②不存在点D,使四面体ABCD是正三棱锥 ③存在点D,使CD与AB垂直并且相等 ④存在无数个点D,使点O在四面体ABCD的外接球面上 其中真命题的序号是. 参考答案:③④【考点】球内接多面体;棱锥的结构特征. 【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定; 对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥; 对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等; 对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假. 【解答】解:对于①,∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3, ∴AC=BC=,AB= 当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2,四面体ABCD的三条棱DA、DB、DC两两垂直, 此时点D,使四面体ABCD有三个面是直角三角形,故①不正确; 对于②,由①知AC=BC=,AB=, 使AB=AD=BD,此时存在点D,CD=,使四面体C﹣ABD是正三棱锥,故②不正确; 对于③,取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确; 对于④,先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可 ∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确 故答案为:③④. 【点评】本题主要考查了棱锥的结构特征,同时考查了空间想象能力,转化与划归的思想,以及构造法的运用,属于中档题. 17.函数的零点个数为

。参考答案:2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.

某工厂生产A,B两种元件,已知生产A元件的正品率为75%,生产B元件的正品率为80%,生产1个元件A,若是正品则盈利50元,若是次品则亏损10元;生产1个元件B,若是正品则盈利40元,若是次品则亏损5元.

(I)求生产5个元件A所得利润不少于140元的概率;

(Ⅱ)设X为生产1个元件A和1个元件B所得总利润,求X的分布列和数学期望.

参考答案:略19.已知a,b,c分别为△ABC的内角A,B,C的对边,且C=2A,cosA=.(1)求c:a的值;(2)求证:a,b,c成等差数列;(3)若△ABC周长为30,∠C的平分线交AB于D,求△CBD的面积.参考答案:考点:余弦定理;正弦定理.专题:解三角形.分析:(1)由C=2A,得到sinC=sin2A,求出sinC与sinA之比,利用正弦定理求出c与a之比即可;(2)由cosC=cos2A,把cosA的值代入求出cosC的值,进而求出sinC的值,由cosA的值求出sinA的值,利用两角和与差的正弦函数公式化简sin(A+C),把各自的值代入求出sin(A+C)的值,即为sinB的值,进而得到sinA+sinC=2sinB,利用正弦定理化简即可得证;(3)由2b=a+c,且a+b+c=30,得到b=10,由c:a=3:2,得到a=8,c=12,过D作DE⊥AC,交AC于点E,由∠BCA=2∠A,且∠BCA的平分线交AB于点D,得到AD=CD,求出AE的长,在三角形ADE中求出AD的长,利用角平分线定理求出BD的长,利用三角形面积公式求出三角形BCD面积即可.解答:解:(1)∵C=2A,∴sinC=sin2A,∴==2cosA=,则由正弦定理得:c:a=sinC:sinA=3:2;(2)∵cosC=cos2A=2cos2A﹣1=2×﹣1=,∴sinC==,∵cosA=,∴sinA==,∴sinB=sin(A+C)=sinAcosC+cosAsinC=,∴sinA+sinC==2sinB,利用正弦定理化简得:2b=a+c,则a,b,c成等差数列;(3)由2b=a+c,且a+b+c=30,得到b=10,由c:a=3:2,得到a=8,c=12,过D作DE⊥AC,交AC于点E,∵∠BCA=2∠A,且∠BCA的平分线交AB于点D,∴∠A=∠ACD,即AD=CD,∴AE=b=5,∵cosA=,AD=,由角平分线定理得:===,∴BD=AD=,则S△CBD=××8×=.点评:此题考查了余弦定理,等差数列的性质,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.20.(本小题满分10分)选修:几何证明选讲如图所示,是半圆的直径,,垂足为,,与、分别交于点、.(Ⅰ)证明:;(Ⅱ)证明:.参考答案:21.(本小题满分12分)如图所示,在直三棱柱中,底面的棱,且.点、在侧棱上,且.(1)证明:平面;(2)求点到平面的距离.参考答案:22.在平面直角坐标系中xOy中,动点E到定点(1,0)的距离与它到直线x=﹣1的距离相等.(Ⅰ)求动点E的轨迹C的方程;(Ⅱ)设动直线l:y=kx+b与曲线C相切于点P,与直线x=﹣1相交于点Q.证明:以PQ为直径的圆恒过x轴上某定点.参考答案:【考点】直线与圆锥曲线的关系;与直线有关的动点轨迹方程.【分析】(Ⅰ)设出动点E的坐标为(x,y),然后直接利用抛物线的定义求得抛物线方程;(Ⅱ)设出直线l的方程为:y=kx+b(k≠0),联立直线方程和抛物线方程化为关于y的一元二次方程后由判别式等于0得到k与b的关系,求出Q的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论