版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省益阳市乌旗山乡中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,则A∩B=(
)A.(0,+∞) B.(0,2) C.(-1,0) D.(-1,2)参考答案:B分析:根据一元二次不等式求出集合,在根据指数函数的值域求出集合,再利用两个集合的交集的定义求出.详解:集合,集合,所以,故选B.点睛:本题主要考查了一元二次不等式的求解和指数函数的图象与性质,以及集合交集的运算,着重考查了学生推理与运算能力.2.已知x,y满足约束条件,若2x+y+k≥0恒成立,则直线2x+y+k=0被圆(x﹣1)2+(y﹣2)2=25截得的弦长的最大值为()A.10 B.2 C.4 D.3参考答案:B【考点】7C:简单线性规划.【分析】由约束条件作出可行域,求出2x+y的最小值,结合2x+y+k≥0恒成立求得k的范围,再由直线与圆的关系可得当k=6时,直线2x+y+k=0被圆(x﹣1)2+(y﹣2)2=25截得的弦长最大,从而求得最大值.【解答】解:由约束条件作出可行域如图,联立,解得A(﹣2,﹣2),令z=2x+y,化为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最小,z有最小值为﹣6.由2x+y+k≥0恒成立,得﹣k≤2x+y恒成立,即﹣k≤﹣6,则k≥6.圆(x﹣1)2+(y﹣2)2=25的圆心(1,2)到直线2x+y+k=0的距离d=,当k≥6时,d.∴当d=时,直线2x+y+k=0被圆(x﹣1)2+(y﹣2)2=25截得的弦长最大,为2.故选:B.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.3.不等式的解集是A.(-2,3)
B.(-2,0)∪(1,3)
C.(0,1)
D.(-3,0)∪(1,2)参考答案:B4.已知集合,,则(
)A.
B.
C.
D.参考答案:C5.设函数f(x)=ax2+b(a≠0),若f(x)dx=3f(x0),则x0=
A.±1
B.
C.±
D.2参考答案:C6.函数的单调区间为(
).
.
.
.参考答案:B略7.已知数列{an}的通项公式为an=log2(n∈N*),设其前n项和为Sn,则使Sn<﹣5成立的自然数n(
)A.有最小值63 B.有最大值63 C.有最小值31 D.有最大值31参考答案:A【考点】数列的求和.【专题】常规题型.【分析】先有{an}的通项公式和对数的运算性质,求出Sn,再把Sn<﹣5转化为关于n的不等式即可.【解答】解:∵an=log2,∴Sn=a1+a2+a3+…+an=log2+log2+…+log2=log2=log2,又因为Sn<﹣5=log2??n>62,故使Sn<﹣5成立的正整数n有最小值:63故选
A【点评】本题考查了数列的求和以及对数的运算性质,是一道基础题.8.小张刚参加工作时月工资为5000元,各种用途占比统计如下面的条形图.后来他加强了体育锻炼,目前月工资的各种用途占比统计如下面的拆线图.已知目前的月就医费比刚参加工作时少200元,则目前小张的月工资为(
)
A.5500 B.6000 C.6500 D.7000参考答案:A【分析】根据条形图求得刚参加工作的月就医费,从而求得目前的月就医费;利用折线图可知目前月就医费占收入的10%,从而可求得月工资.【详解】由条形图可知,刚参加工作的月就医费为:元则目前的月就医费为:元目前的月工资为:元本题正确选项:A9.若,则下列不等式正确的是(
)A.
B.
C.
D.参考答案:C10.已知x,y满足条件则z=的最大值
A.3
B.
C.
D.-参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知与().直线过点与点,则坐标原点到直线MN的距离是
.参考答案:12.已知集合,则___________.参考答案:13.13.设,,则的值是____________.参考答案:14.已知(1-2x)n的展开式的二项式系数和为64,则它的展开式的中间项是
.参考答案:答案:-160x3
15.一个几何体的三视图如图所示,则该几何体的体积的为
.
参考答案:;16.设O是△ABC内部一点,且的面积之比为
.参考答案:117.函数y=的单调递增区间是.参考答案:[0,]【考点】两角和与差的余弦函数;正弦函数的图象.【专题】三角函数的图像与性质.【分析】化简可得y=sin(x+),解不等式2kπ﹣≤x+≤2kπ+可得函数所有的单调递增区间,结合x∈[0,]可得.【解答】解:化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],由x∈[0,]可得x∈[0,],故答案为:[0,].【点评】本题考查两角和与差的三角函数,涉及三角函数的单调性,属基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)求的定义域;(2)求该函数的反函数;(3)判断的奇偶性.参考答案:解析:
(1)
故函数的定义域是(-1,1)(2)由,得(R),所以,
所求反函数为
(
R). (3)==-,所以是奇函数.19.如图所示,点B,C是椭圆E:的两个顶点,椭圆E与圆N(N为圆心)相交于A、B两点,点M(-2,1)为弦AB上-点,且NM⊥AB,OB∥BC.(1)求椭圆E的离心率;(2)求椭圆E的方程.参考答案:
20.设函数f(x)=|x﹣a|,a∈R.(Ⅰ)当a=2时,解不等式:f(x)≥6﹣|2x﹣5|;(Ⅱ)若关于x的不等式f(x)≤4的解集为,且两正数s和t满足2s+t=a,求证:.参考答案:【考点】R5:绝对值不等式的解法.【分析】(Ⅰ)利用绝对值的意义表示成分段函数形式,解不等式即可.(2)根据不等式的解集求出a=3,利用1的代换结合基本不等式进行证明即可.【解答】(Ⅰ)解:当a=2时,不等式:f(x)≥6﹣|2x﹣5|,可化为|x﹣2|+|2x﹣5|≥6.①x≥2.5时,不等式可化为x﹣2+2x﹣5≥6,∴x≥;②2≤x<2.5,不等式可化为x﹣2+5﹣2x≥6,∴x∈?;③x<2,不等式可化为2﹣x+5﹣2x≥6,∴x≤,综上所述,不等式的解集为(﹣];(Ⅱ)证明:不等式f(x)≤4的解集为=,∴a=3,∴=()(2s+t)=(10++)≥6,当且仅当s=,t=2时取等号.21.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.(Ⅰ)计算甲班7位学生成绩的方差s2;(Ⅱ)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差,其中.参考答案:【考点】极差、方差与标准差;茎叶图.【专题】概率与统计.【分析】(Ⅰ)利用平均数求出x的值,根据所给的茎叶图,得出甲班7位学生成绩,做出这7次成绩的平均数,把7次成绩和平均数代入方差的计算公式,求出这组数据的方差.(Ⅱ)设甲班至少有一名学生为事件A,其对立事件为从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生;先计算出从成绩在90分以上的学生中随机抽取两名学生的所有抽取方法总数,和没有甲班一名学生的方法数目,先求出从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生的概率,进而结合对立事件的概率性质求得答案【解答】解:(I)∵甲班学生的平均分是85,∴.…∴x=5.…则甲班7位学生成绩的方差为s2==40.…(II)甲班成绩在90(分)以上的学生有两名,分别记为A,B,…乙班成绩在90(分)以上的学生有三名,分别记为C,D,E.…从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E).…其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).…记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 42968.2-2024集成电路电磁抗扰度测量第2部分:辐射抗扰度测量TEM小室和宽带TEM小室法
- 设备设施维修简单的合同
- 的美好的早安心语语录49条
- 儿童体育游戏教案
- 简短教师辞职信范文
- 河南省驻马店市遂平县2024-2025学年九年级上学期期中语文试题(含答案)
- 《南方地区》课件
- 【初中数学课件】北师大版分解因式法课件
- 自然风景区沉浸式夜游休闲旅游度假景区总体规划案【旅游】【文旅】【景区规划】
- 机械设计课件
- 2024年国网公司企业文化与职业道德试考试题库(含答案)
- 2024年度亚马逊FBA货物海运合同
- 建筑装饰的室内装修工艺与施工技术考核试卷
- 网络攻击应急预案演练总结报告
- 交通运输行业火灾安全预案
- 厂中厂承租方对出租方日常安全检查记录表
- 消防培训课件
- 构美-空间形态设计学习通超星期末考试答案章节答案2024年
- 第六章 数列综合测试卷(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
- 大学生社会责任教育(安徽专用)学习通超星期末考试答案章节答案2024年
- 小米公司介绍课件
评论
0/150
提交评论