




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省珠海市第十一中学2023-2024学年中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)2.下列运算错误的是()A.(m2)3=m6B.a10÷a9=aC.x3•x5=x8D.a4+a3=a73.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)4.下列几何体是棱锥的是()A. B. C. D.5.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折 B.7折C.8折 D.9折6.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A.65π B.90π C.25π D.85π7.-4的相反数是()A. B. C.4 D.-48.如图,从圆外一点引圆的两条切线,,切点分别为,,如果,,那么弦AB的长是()A. B. C. D.9.已知关于x的一元二次方程有实数根,则m的取值范围是()A. B. C. D.10.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是611.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(
)A.35° B.45° C.55° D.65°12.关于的分式方程解为,则常数的值为()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____14.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.15.一个圆锥的三视图如图,则此圆锥的表面积为______.16.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为________元。17.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____18.计算:(3+1)(3﹣1)=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:,其中x=﹣1.20.(6分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.21.(6分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.22.(8分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)23.(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.24.(10分)解不等式组:并写出它的所有整数解.25.(10分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.26.(12分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.27.(12分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.2、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.3、A【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.4、D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.5、B【解析】
设可打x折,则有1200×-800≥800×5%,解得x≥1.即最多打1折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.6、B【解析】
根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长==13,所以圆锥的表面积=π×52+×2π×5×13=90π.故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7、C【解析】
根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.8、C【解析】
先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.【详解】解:,PB为的切线,,,为等边三角形,.故选C.【点睛】本题考查切线长定理,掌握切线长定理是解题的关键.9、C【解析】
解:∵关于x的一元二次方程有实数根,∴△==,解得m≥1,故选C.【点睛】本题考查一元二次方程根的判别式.10、D【解析】
根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.11、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.12、D【解析】
根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.【详解】解:把x=4代入方程,得,解得a=1.经检验,a=1是原方程的解故选D.点睛:此题考查了分式方程的解,分式方程注意分母不能为2.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、115°【解析】
根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到结论.【详解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂线上,N在PC的中垂线上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案为:115°【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.14、y=(x﹣3)2+2【解析】
根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,故答案为:y=(x﹣3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15、55πcm2【解析】
由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【详解】由三视图可知,半径为5cm,圆锥母线长为6cm,
∴表面积=π×5×6+π×52=55πcm2,故答案为:55πcm2.【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.16、500【解析】
设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.17、【解析】
设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018为(1009,0).故答案为:(),(1009,0).【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.18、1.【解析】
根据平方差公式计算即可.【详解】原式=(3)2-12=18-1=1故答案为1.【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、-2.【解析】
根据分式的运算法化解即可求出答案.【详解】解:原式=,当x=﹣1时,原式=.【点睛】熟练运用分式的运算法则.20、1【解析】
先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.21、(1)见解析;(2)证明见解析.【解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.22、答案见解析【解析】
根据轴对称的性质作出线段AC的垂直平分线即可得.【详解】如图所示,直线EF即为所求.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图.23、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】
(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.24、原不等式组的解集为,它的所有整数解为0,1.【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.【详解】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【点睛】本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).25、这栋楼的高度BC是米.【解析】试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.试题解析:解:∵°,°,°,AD=100,∴在Rt中,,在Rt中,.∴.点睛:本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《结肠息肉护理与预防》课件
- 《兰州财经大学法学院》课件
- 《房地产经纪实务与应用课件》
- 谭小芳领导干部学习能力提升培训
- 2025年武汉货运从业资格证考试模拟考试题及答案大全
- 上海市松江区统考2025届高三下学期第一次统一考试语文试题试卷含解析
- 柳州铁道职业技术学院《观赏植物病理学》2023-2024学年第一学期期末试卷
- 文山壮族苗族自治州2025年数学三下期末联考模拟试题含解析
- 狮子山区2024-2025学年数学五下期末质量跟踪监视试题含答案
- 武汉海事职业学院《中国古代小说研究》2023-2024学年第二学期期末试卷
- 工作室股东合同协议
- 关于市中小学“校园餐”突出问题专项整治情况的报告
- SZDB-Z 173-2016 物业绿化养护管理规范
- 艺考全真乐理试题及答案
- 摄影人像知识篇课件
- 急救知识培训课件下载
- 锅炉安装安全管理制度
- 液压安全知识培训课件
- 工贸企业综合应急预案
- 中国安全生产中介服务市场深度调研分析及投资前景研究预测报告
- 运输考试试题及答案
评论
0/150
提交评论