版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省宿州市埇桥区教育集团中考数学模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B.1 C. D.2.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.353.如图,,交于点,平分,交于.若,则
的度数为()
A.35o B.45o C.55o D.65o4.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23° B.46° C.67° D.78°5.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是()A.6 B.3.5 C.2.5 D.16.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.7.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4408.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)9.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.B.C.D.10.函数的自变量x的取值范围是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.12.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.13.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.14.分解因式:9x3﹣18x2+9x=.15.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.16.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg17.若分式方程有增根,则m的值为______.三、解答题(共7小题,满分69分)18.(10分)对于方程x2解:方程两边同乘6,得3x﹣2(x﹣1)=1①去括号,得3x﹣2x﹣2=1②合并同类项,得x﹣2=1③解得x=3④∴原方程的解为x=3⑤上述解答过程中的错误步骤有(填序号);请写出正确的解答过程.19.(5分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.20.(8分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.21.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.22.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.23.(12分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.24.(14分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是人,补全频数分布直方图,扇形图中m=;(2)本次调查数据中的中位数落在组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,∴从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.2、B【解析】设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:,,∴,∴当时,(亿),∵400-375=25,∴该行可贷款总量减少了25亿.故选B.3、D【解析】分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE的度数.详解:又∵EF平分∠BEC,.故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.4、B【解析】
根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.【详解】根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.故选B.【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.5、C【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.6、D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.7、A【解析】
根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.8、A【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.9、B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.考点:由实际问题抽象出一元二次方程.10、D【解析】
根据二次根式的意义,被开方数是非负数.【详解】根据题意得,解得.故选D.【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.12、【解析】分析:根据题意可以列出相应的方程组,从而可以解答本题.详解:由题意可得,,故答案为点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.13、【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.【详解】在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案为:【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.14、9x【解析】试题分析:首先提取公因式9x,然后利用完全平方公式进行因式分解.原式=9x(-2x+1)=9x.考点:因式分解15、【解析】
由题中所给条件证明△ADF△ACG,可求出的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.16、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17、-1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x-1),得x-1(x-1)=-m∵原方程增根为x=1,∴把x=1代入整式方程,得m=-1,故答案为:-1.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.三、解答题(共7小题,满分69分)18、(1)错误步骤在第①②步.(2)x=4.【解析】
(1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可.【详解】解:(1)方程两边同乘6,得3x﹣2(x﹣1)=6①去括号,得3x﹣2x+2=6②∴错误步骤在第①②步.(2)方程两边同乘6,得3x﹣2(x﹣1)=6去括号,得3x﹣2x+2=6合并同类项,得x+2=6解得x=4∴原方程的解为x=4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.19、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y=;(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案为﹣;②AB的解析式为当PA⊥AB时,PA的解析式为y=﹣2x﹣2,联立PA与抛物线,得,解得(舍),,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得,解得(舍),即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,当t=0时,S取最大值,即M(0,1).由勾股定理,得AB==,设M到AB的距离为h,由三角形的面积,得h==.点M到直线AB的距离的最大值是.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键20、(1);(2)(0,)或(0,4).【解析】试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.试题解析:(1)∵抛物线经过点A(1,0),∴,∴;(2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).考点:二次函数综合题.21、(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或.【解析】
(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租车协议合同范本示例
- 真心相待的夫妻保证书
- 简单隐私保护合同协议样本
- 规范文本偷钱保证书范例
- 建筑劳务分包安全管理协议
- 精确市场调研制作合同
- 绿化项目招标答疑
- 软件开发合同协议范本示例
- 零售店长工作合同
- 补充合同格式范本
- 职业技能大赛-食品安全管理师竞赛理论知识题及答案
- 农村活动广场实施方案村文化小广场建设的实施方案
- 2024简易租房合同下载打印
- 统编版(2024)道德与法治七年级上册:第二单元《成长的时空》第4-7课教案(8课时)
- 2024-2030年中国船只燃料行业市场发展趋势与前景展望战略分析报告
- 2024年浙江高考技术试题(含答案)
- TBSES 001-2024 建设项目环境影响后评价技术指南 污染影响类
- 《财务会计学(第14版)》课后参考答案 戴德明
- (2024)医师定期考核法律法规必刷题库及答案
- 人音版音乐二年级上册《小红帽》说课稿
- 人教版(PEP)英语四年级上册《Unit 1 My classroom》单元教学设计 1
评论
0/150
提交评论