版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省南充市大桥中学高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=2sin(-)·sin(+)(x∈R),下面结论错误的是
(A)函数f(x)的最小正周期为2π
(B)函数f(x)在区间[0,]上是增函数
(C)函数f(x)的图像关于直线x=0对称
(D)函数f(x)是奇函数
参考答案:D略2.下列函数中,图像的一部分如右图所示的是(
) A. B. C.
D. 参考答案:C略3.下列程序框图中,输出的的值是A.
B.
C.
D.参考答案:C试题分析:根据题意有,在运行的过程中,;;,;;,以此类推,就可以得出输出的A是以为分子,分母构成以为首项,以为公差的等差数列,输出的是第10项,所以输出的结果为,故选C.考点:程序框图.4.已知集合M={x|log3x≤1},N={x|x2﹣2x<0},则(
) A.M=N B.M∩N=? C.M∩N=R D.N?M参考答案:D考点:对数函数的单调性与特殊点;交集及其运算.专题:函数的性质及应用.分析:解对数不等式求得M,解一元二次不等式求得N,从而得到M、N间的关系.解答: 解:∵集合M={x|log3x≤1}={x|0<x≤3},N={x|x2﹣2x<0}={x|0<x<2},∴N?M,故选:D.点评:本题主要考查对数不等式、一元二次不等式的解法,两个集合间的包含关系,属于基础题.5.函数的部分图象如右图所示,其中A、B两点之间的距离为5,则(
)A.2
B.
C.
D.-2参考答案:A6.若,则z=A.-1-i B.-1+i C.1-i D.1+i参考答案:D,.
7.设函数在内有定义。对于给定的正数,定义函数,取函数。若对任意的,恒有,则
A、的最大值为2
B、的最小值为2
C、的最大值为3
D、的最小值为3参考答案:C8.设b>0,二次函数的图像为下列之一,则a的值为
(
)A.1
B.
C.
D.参考答案:C9.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为参考答案:D本题主要考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图为半个圆锥与一个三棱锥的组合体,再有线的实虚可知D正确,故选D.10.条件,条件;若p是q的充分而不必要条件,则的取值范围是A.
B.
C.
D.
参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知平面向量,若,则=
,若,则=
;参考答案:;试题分析:若则有,解得,即此时,;若则有,解得,即此时,.考点:1向量共线,垂直;2向量坐标的加减法.12.函数y=f(x)是定义域为R的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).1
当时,y的取值范围是
;2
果对任意(b<0),都有,那么b的最大值是
.参考答案:;13.已知角θ的终边过点(4,﹣3),则tanθ=,=
.参考答案:,8.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】直接利用任意角的三角函数的定义即可求解tanθ,利用诱导公式,同角三角函数基本关系式化简所求即可计算得解.【解答】解:∵角θ终边上一点P(4,﹣3),∴由三角函数的定义可得tanθ=,∴===8,故答案为:,8.14.与直线2x-y-4=0平行且与曲线相切的直线方程是
.参考答案:15.已知函数,关于x的方程有且只有一个实根,则实数a的范围是
.参考答案:(1,+∞)16.下列使用类比推理所得结论正确的序号是______________(1)直线,若,则。类推出:向量,若则(2)同一平面内,三条不同的直线,若,则。类推出:空间中,三条不同的直线,若,则(3)任意则。类比出:任意则(4)、以点为圆心,为半径的圆的方程是。类推出:以点为球心,为半径的球的方程是参考答案:(4)17.已知且,函数设函数的最大值为,最小值为,则=
.
参考答案:6设则为奇函数,所以三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)运货卡车以每小时千米的速度匀速行驶130千米,按交通法规限制(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(Ⅰ)求这次行车总费用关于的表达式;(Ⅱ)当为何值时,这次行车的总费用最低,并求出最低费用的值.(精确小数点后两位)参考答案:(Ⅰ)设行车所用时间为,所以,这次行车总费用y关于x的表达式是(或:)(Ⅱ),仅当时,上述不等式中等号成立答:当x约为56.88km/h时,这次行车的总费用最低,最低费用的值约为82.16元.19.[选修4-4:坐标系与参数方程]已知曲线C的极坐标方程ρ=2cosθ,直线l的参数方程是(t为参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设直线l与y轴的交点是M,N是曲线C上一动点,求|MN|的最大值.参考答案:【考点】函数的最值及其几何意义;参数方程化成普通方程.【分析】(Ⅰ)曲线C的极坐标方程可化为ρ2=2ρcosθ,利用x2+y2=ρ2,x=ρcosθ,即可得出;(Ⅱ)求出点M与圆心的距离d,即可得出最小值.【解答】解:(Ⅰ)曲线C的极坐标方程可化为ρ2=2ρcosθ,又x2+y2=ρ2,x=ρcosθ,∴曲线C的直角坐标方程为x2+y2﹣2x=0.(Ⅱ)将直线l的参数方程化为直角坐标方程,得y=2x+2,令x=0得y=2,即M点的坐标为(0,2).又曲线C为圆,圆C的圆心坐标为(1,0),半径r=1,则|MC|=,|MN|≤|MC|+r=+1.∴MN的最大值为+1.20.已知等差数列的前n项和满足(1)求的通项公式;(2)求数列的前n项和.
参考答案:解:(1)设的公差为d,则.由已知得解得.故的通项公式为.(2)由(I)知从而数列的前n项和为
【题文】已知向量m=(sinx,-1),n=(),函数=m2+mn-2(1)求的最大值,并求取最大值时x的取值集合;(2)已知a,b,c分别为△ABC内角A、B、C的对边,且a,b,c成等比数列,角B为锐角,且,求的值.
【答案】解:(1).故,得所以取最大值时x的取值集合为。(2)由及正弦定理得于是
【题文】已知函数(e为自然对数的底数).(1)当a=1时,求过点(1,)处的切线与坐标轴围成的三角形的面积;(2)若在(0,1)上恒成立,求实数a的取值范围.
【答案】解:(1)当时,函数在点(1,)处的切线方程为,即设切线x、y轴的焦点分别为A,B.令x=0得y=-1,令y=0得在点(1,)处的切线与坐标轴围成的面积为(2)由得,令令在为减函数,又为增函数,,因此只需
略21.(本题满分12分)已知向量,,(为常数,是自然对数的底数),曲线在点处的切线与轴垂直,.(1)求的值及的单调区间;(2)已知函数(为正实数),若对于任意,总存在,使得,求实数的取值范围.参考答案:(1),的增区间为,减区间为;(2).考点:1、向量平行的性质及导数的几何意义;2、利用导数研究函数的单调性及求函数的最值.【方法点晴】本题主要考查的是向量平行的性质及导数的几何意义、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;④根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).22.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人房产买卖标准协议样本(2024年版)版B版
- 个人债权转让协议(2024版)3篇
- 个人手车买卖合同
- 专业软件技术开发服务协议(2024年更新版)版B版
- 二零二四商场LED显示屏采购与安装合同
- 2025年度城市综合体配套厂房建造与装修承包合同范本4篇
- 2025年度厂房土地开发及使用权出让合同4篇
- 2025年度插座产品售后服务网络建设合同4篇
- 2025年度科技园区场地转租及知识产权保护协议4篇
- 2024年05月上海华夏银行上海分行招考笔试历年参考题库附带答案详解
- 春节行车安全常识普及
- 电机维护保养专题培训课件
- 汽车租赁行业利润分析
- 春节拜年的由来习俗来历故事
- 2021火灾高危单位消防安全评估导则
- 佛山市服务业发展五年规划(2021-2025年)
- 房屋拆除工程监理规划
- 医院保安服务方案(技术方案)
- 高效能人士的七个习惯:实践应用课程:高级版
- 小数加减法计算题100道
- 通信电子线路(哈尔滨工程大学)智慧树知到课后章节答案2023年下哈尔滨工程大学
评论
0/150
提交评论