




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
思想03数形结合思想
钎布考
1.(2016•全国高考真题(文))函数尸"-e3在[-2,2]的图像大致为()
【解析】
函数£々)=2*2-6冈在[_2,2]上是偶函数,其图象关于y轴对称,因为/'(2)=8—1,0<8—/<1,所
以排除4B选项;当xe[0,2]时,y,=4x-e”有零点,设为小,当%c(0/。)时,“乃为减函数,当xe(x0,2)
时,f(x)为增函数.故选D
2.(2017•全国高考真题(理))在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD
相切的圆上.若AP=/1AB+〃AD,则;1+〃的最大值为()
A.3B.272C.75D.2
【答案】A
【解析】
如图所示,建立平面直角坐标系.
设A(0,l),B(0,0),C(2,0),r>(2,l),P(x,y).
2
易得圆的半径r=7不,即圆C的方程是(x—2)一+丁
uuuUUUUUU1
AP=(x,y-l),AB=(0-l),A£>=(2,0),若满足AP=/L43+〃A£>,
x=2uxx
则《,〃=一,4=1-y,所以4+/z=—y+1,
y-\=-A22
设2=1—丁+1,即:y+l-z=O,点P(x,y)在圆(》一2),;/=1
|2-z|2
x-L<
所以圆心(2,0)到直线一一丁+1—2=0的距离1〈厂,即n一—忑,解得lWz43,
2J-+1-+1
4
所以Z的最大值是3,即4+〃的最大值是3,故选A.
x+2y-4<0
3.(2014•浙江高考真题(理))当实数满足{x-y—1W0时,l〈or+y«4恒成立,则实数a的取
x>l
值范围是.
'3
【答案】
【解析】
作出不等式组表示的区域如下图所示的阴影部分区域,
由图可知:不等式l4ax+y44在阴影部分区域恒成立,令2=女+^可知。20,因为当。之0,且
当x=l,y=O时,z=ax+y=a+O=a<()不能使得1<ar+y<4恒成立;由aNO得z=ax+y在点
(1,0)处取得最小值,即Zmm=ox+y=a,在点(2,1)处取得最大值,即=or+y=2。+1,所以有
3
{篇“解得1。、.
4.(2017•全国高考真题(文))四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面
ABCD,AB=BC^-AD,ABAD=NABC=90°.
2
(1)证明:直线8C//平面PAD;
(2)若△PC。面积为2疗,求四棱锥P-ABC。的体积.
【答案】(I)见解析(II)
【解析】
(1)在平面48CO内,因为NB/O=N/8C=90°,所以8c〃4D
又BC<2平面PAD、ADu平面PAD,故BCH平面PAD.
(2)取4。的中点仍,连接
由48=BC=•?•力。及8C〃N48C=90”,
2
得四边形48CM为正方形,则CA/J.力£)..
因为侧面PAD为等边三角形且垂直于底面/8CO,平面P/OCI平面ABCD=AD,
所以PM1尸MJ■底面ABCD.
因为CA/u底面488,所以PMJ.CA/,
设8C=x,则CA/=x,CO=&x,PA/=JIx,PC=P£>=2x,取C。的中点N,连接PN,贝U
PN上CD,所以PN=5&X,
2
因为APCQ的面积为2J7,所以L五xx史~=2出,
22
解得x=—2(舍去),x=2.
于是AB=BC=2,AD=4,PM=26.
所以四棱锥P力6co的体积/=£x2(2+4)x2^=4^
32
5.(2013•浙江高考真题(文))(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(I)求抛物线C的方程;
(II)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线1:y=x-2于M、N两点,求|MN|
的最小值.
V
(2)当t=-争寸,|MN|的最小值是2普
【解析】
(I)由题意可设抛物线C的方程为x2=2py(p>0)则贤1,解得p=2,故抛物线C的方程为x?=4y
(II)设A(xi,yi),B(X2,y2).直线AB的方程为y=kx+l
fy=kx+l
由《9消去y,整理得x2-4kx-4=0
J4y
=42
所以X|+X2=4k,X|X2=-4,从而有|xi-(町+乂2)2-4X[X2Vk+l
n2xi
--X2Xi--~S=-^-
由,X[解得点M的横坐标为XM=----
x.-y._±14-X]
y=x-2X14
同理可得点N的横坐标为XN=J&-
qx2
|-8^心+]
所以|MN|二技M-XN|=A/^&---4--1=8费-----
4X4x-4(x+x)+1614k-3|
12XjX2t2
令4k-3=t,i不为0,则k=±3
4
一、考向分析:
二、考向解读
考向一、构建函数模型并结合其图象求参数的取值范围
典例1.(福建省福州市2019届高三上学期抽测)如图,函数〃》)的图像为两条射线C4CB组成的折
线,如果不等式/•(为2/一》一£1的解集中有且仅有1个整数,那么实数a的取值范围是()
A.{a|-2<a<-1]B.{a|-2<a<-1}
C.{a|-2<a<2}D.[a\a>-2}
【答案】B
【解析】
根据题意可知"4=一,
J+2,x>0
不等式f(x)-x-a等价于a^x-f(x),
令g(x)=x-x-f^x)
_(x2-3x-2,x<0
Ix2-2zx>0
又g(0)=-2,g(l)=-l,g(-l)=2,
・,•要使不等式的解集中有且仅有1个整数,
则-2WK1,
即a取值范围是{a|-2WHV1}.
故选:B.
典例2.(2019・宁夏大学附属中学高三月考(理))已知当0<xW2时,不等式劲上<2a+l-,以恒
x2
成立,则实数。的取值范围为()
A.(In2+l,+oo)B.(In2-1,+oo)c.(—,+00)D.(In2-1,0)
2
【答案】B
【解析】
不等式生/<2。+1一;苏,可看作函数〃力=为竺,g(x)=_ga(x_4)+i,在区间(0,2]上,
/(%)的图像在g(%)图像下方.f(x)=2(1—?”),所以"》)在(0同上递增,在(e,+8)上递减,所以
“X)在x=e时取得极大值也即是最大值,且x>l时,〃x)>0.g(x)图像过点
(4,1),/(2)=In2J(2)=上詈,所以过8(2,匕詈)的〃x)的切线方程为
y-ln2=上臂(X-2),点A(4,1)在切线上,g(x)也过点A(4,l).画出/(x),g(x)在区间(0,2]上的
图像如下图所示,由图可知,一<。<&8=上詈,解得a>ln2—1.
考向二、构建函数模型并结合其图象研究方程根的范围
ln(x+l),x>0
典例3.(2018•山东高考模拟(文))已知函数/(X)='1,若m<〃,且/(/〃)=/(〃),
-x+l,x<0
12
则〃一机的取值范围为()
A.[3-21n2,2)B,[3-21n2,2]C.[f-1,2)D.[e-1,2]
【答案】A
【解析】
作出函数/(x)的图象,如图所示,若加<〃,且外加)=/(〃),
则当ln(x+l)=l时,得x+l=e,即x=e—1,
则满足。<〃<e-l,-2<m<0,
JJiJln(n+l)=—m+1,即m=ln(〃+l)-2,则〃一加=〃+2—21ri(〃+l),
2
9n_i
设/z(/z)=〃+2-21n(〃+l),0v力We-l,则”(〃)=1+----=---
当〃(九)>0,解得当解得0v〃vl,
当〃=1时,函数力(〃)取得最小值"⑴=l+2—21n(l+l)=3—21n2,
当〃=0时,〃(0)=2—21nl=2;
当72=e-l时,=l+2-21n(e-l+l)=e—1<2,
所以3-2如2〈人〃)<2,即〃—〃7的取值范围是[3—21n2,2),故选A.
{cr—ab,aWb,
典例4.对于实数。和协定义运算:〃坨=「设氏0=(21-1)*(工一1),且关于x的
[b—ab,a>b.
方程yU)=m(〃7£R)恰有三个互不相等的实数根为,X2,X3,则为12尤3的取值范围是.
【答案】―心,0
X-x,x<0,
【解析】由定义可知,Ax)=、作出函数f(x)的图象,如图所示.
[―x—x,%>0.
由图可知,当0〈水;时,f(x)=w(0dR)恰有三个互不相等的实数根小,xz,的
11X-
不妨设汨<X2〈X3,易知上2>0,且*2+X3=2X]=l,,起水].令,4
、求0,
解得X」沙或k(舍去).・/g〈x】<0,〈丁丁丁<0.,答案0
4’24m41J6Pk16
考向三、构建函数模型并结合其图象研究量与量之间的大小关系
典例5.函数/(x)=/^乂的图象如图所示,则下列结论成立的是()
(x+c)~
(A)々>0,b>0,c<0(B)。<0,Z?>0,c>0
(C)Q<0,b>0,c<0(D)a<0,b<0,c<0
【答案】C
【解析】由/(x)='W、及图象可知,XX-C,-c>0,则c<0;当x=0时,/(0)=4>0,
(x+c)c
b
所以/?>0;当y=0,ax+b-0.所以x=——>0,所以。<0.故a<0,b>0,c<0,选C.
a
考向四、构建函数模型并结合其几何意义研究函数的最值问题和证明不等式
典例6.(上海市2018-2019学年高二下学期检测)“横看成岭侧成峰,远近高低各不同同一事物从不同
角度看,我们会有不同的认识.请解决以下问题:设函数f(x)=ajc2+(2b+\)x-a-2(a,Z?eR,aW0)在[3,4]
至少有一个零点,则标+从的最小值为
【答案】上
100
【解析】
把等式看成关于a,b的直线方程:(/-1)。+2功+『2=0,
由于直线上一点(a,b)到原点的距离大于等于原点到直线的距离,
lx-2l
即2
1)2+(2x)2
所以"2+/N(常1
+4)2,
x-2
':x-2+----在[3,4]是减函数,
x-2
55
.*•2H—(]―2H-----<1+5;
2x—2
95
即一金-2+----<6;
2x—2
____i____>_L
故(*-2+,+4)2一10°;
x-2
23
当x=3,a-----,b—----时取等号,
2550
故cr+b1的最小值为---.
100
故答案为:---
100
典例7.(湖北省黄冈市2019届高三元月调研)关于*的实系数方程必+ax+b0的一个根在(0,1)内,
另一个根在(1,2)内,则a+2b—3的值域为—
【答案】(-5,-2)
【解析】
令f(x)=x2+ax+
由方程必+。*+%=0的一个根在(0,1)内,
另一个根在(L2)内,
'f(0)=b>0
则有(〃1)=l+a+b<0,画出(a,b)的区域,
/(2)=4+2a+6>0
如图所示,△ABC的区域(不含边界).
其中,4(-1,0)、8(—2,0)、C(-3,2),
令z=a+2b-3,
平移z=a+2b-3,
当a=-2,b=0时,Z=(-2)-3=-5>取得最小值,
当Q=-3,b=2时,Z=(-3)+2x2-3=-2.取得最大值;
故Q+26-3的值域为(一5,—2);
故答案为(一5,-2).
考向五、构建立体几何模型研究代数问题
典例8.(2019•北京高三月考(理))如图,在菱形ABC。中,ZABC=60°,E,尸分别是边AB,CO的
中点,现将AABC沿着对角线AC翻折,则直线EF与平面ACD所成角的正切值最大值为()
B
A.72B.—C.—D.—
332
【答案】D
【解析】
如图,
以AC的中点0为坐标原点,建立空间直角坐标系,设二面角B-AC-O为6,可证NBQD=6,设
棱形的边长为4,则A(0,—2,0),5(273cos^,0,273sin0),E(V3cos^,-1,73sin,C(0,2,0),
O(260,0),F(^,l,0)
.1,EE=(Gcose-6,-2,£sin6)
易知平面ACO的法向量”=(0,0,1)
设直线石厂与平面ACO所成角为a,则
(\n-FE\}3sin2^3sin2^3(l-cos2^)
MMq3(cos^-l)2+4+3sin2010-6cos62(5—3cos6)
i_x2/、
令X€(-U)
3X2—10X+3(3x-l)(x-3)
(3x-5『(3x-5)2
则/'(x)>0时一1<x<;即/(x)在(一1,上单调递增;
/'(x)<0时g<x<l即/(x)在匕单调递减:
sin2a_1
tan2a]
/maxcos2a2
V2
.•.(tana)
2
故选:D
典例9.(福建省泉州市2019届高三1月质检)类比圆的内接四边形的概念,可得球的内接四面体的概
念.已知球。的一个内接四面体4BCD中,4BJ.BC,BD过球心0,若该四面体的体积为1,且4B+BC=2,
则球0的表面积的最小值为.
【答案】387r
【解析】
设他结合体积为时,昨申=故”岛所以
=X,BC=2-X.B0=R1%(2-01,
00'=i/i=^―,所以BO'=^x2+(2-x)2,结合
8。,2+。。,2=5。2,建立方程,得到4#=品6+2Tzi+4,令
/i(x)=2T2-4x+4,结合二次函数的性质可知以»在(0,1)递减,(1,2)递增
令r(x)=,,4n)=必(2-的2,结合复合函数的单调性可知,以力在(0,1)递增,在(1,2)递减,而r(x)
始终递减,故4R2在(0,1)递减,在(1,2)递增,故当窜=1,4R2取到最小值为38
所以面积最小值为387r
考向六、构建解析几何中的斜率、截距、距离等模型研究最值问题
典例10.(2018届云南省昆明市第一中学高三月考)已知函数f(x)=3X+CO5GX)-11,若两个正数
a,b满足f(2a+b)<1,则震的取值范围是()
A.(0$B.仔+8)C.(谷)D.(-oo,i)u(1,+oo)
【答案】C
【解析】由/1(X)=3x+cos(;;x)-11可得,f'(x)=3--5in(-x),
即广(x)>0对xeR恒成立,所以〃戈)在实数R上单调递增.
因为/'(4)=3x4+85二—11=1,由f(2a+b)<1可得/'(2a+b)<f(4),
2
(2a+&<4
由题意可得Q>0,画出Q、b的可行域,
b>0
则震可看作区域内点(a,b)与定点P(—2,—1)的斜率.
4-(-1)_5
直线2a+b=4与横轴交于点A(2,0),与纵轴交于点8(0,4),又因为以?=学”=三,kAC
2-(-2)40-(-2)-2
所以以?e(;,:),
故选C.
典例11.(上海市2018-2019学年高二下学期检测)如图,已知四面体ABC。中,DA=DBDC=3五
且。A=O8=OC两两互相垂直,点。是AABC的中心.
(1)过。作OEL4),求AOEO绕直线。。旋转一周所形成的几何体的体积;
(2)将△ZXO绕直线CO旋转一周,则在旋转过程中,直线D4与直线BC所成角记为8,求cos。的
取值范围.
【答案】(1)逑乃:(2)0<cos^<—,
93
【解析】
(I)过E作经计算得。0=指,04=26,OE=2,由此得后”=毡,
3
所以ADEO绕直线DO旋转一周所形成的几何体的体积V=;万(竽)-V6=坐■兀.
(2)过。作OGAC交AB于G,
以。为坐标原点,。尸为x轴,0G为y轴,为z轴,建立空间直角坐标系,
则。(0,。痣),y=f(^-x),c(百3,0),
设A(x,y,0),则BC=(373,-3,0),AD=(-x,-y,6),所以cos0=由罩,
6V2
在xOy平面上,点A的轨迹方程为x2+y2=U,
令t=6x+丫,将/=Gr+y看作直线y=一Gx+t,
则直线广一Jix+t与圆x2+y2=12有公共点,
则。=也23
2
所以于是
3
考向七、构建方程模型,求根的个数
典例12.(黑龙江省哈尔滨市第三中学校2019届高三上期末)已知函数
f(X)=S3X3~x2~3x+2x~5,则函数y=/6»)的零点个数为()
(-log3(x+4),x>5
A.6B.7C.9D.10
【答案】B
【解析】
当T<5时,f'(x)=x2-2x-3=(x+l)(x-3),
据此可得函数在区间(一8,-1)上单调递增,在区间(—1,3)上单调递减,在区间(3,5)上单调递增,
由函数的解析式易知函数在区间(5,+8)上单调递减,
绘制函数图像如图所示,
注意到f(-3)<0,/(-2)>0/(0)>0/(1)<0,/(4)<0/(5)>0.
故方程r(t)=0的解:“e(-3,-2),t2e(0,l),t3e(4,5),
则原问题转化为求方程rCr)=ti(i=1,2,3)时解的个数之和,
由函数图像易知满足题意的零点个数为7个.
本题选择8选项.
考向八、研究图形的形状、位置关系、性质等
典例13.(浙江省2019届高考模拟卷(二))函数y=(cos2x)・ln|x|的图像可能是()
【答案】A
【解析】
由题意得函数f(x)=(cos2x)・ln|x|的定义域为(-8,0)u(0,+co),
x)=[cos(-2x)]•ln|-x|=(cos2x)•ln|x|=f(x)»
函数〃x)为偶函数,
•••函数图象关于y轴对称,故排除C,D.
又当X6(0,1)时,/(X)<0.
因此可排除B.
故选A.
点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,
判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称
性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
典例14.如图,长方形43C。的边A5=2,3C=1,。是A3的中点,点P沿着边BC,CD与D4
运动,记NBOP=x.将动产到A、B两点距离之和表示为x的函数/(x),则y=/(x)的图像大致为
()
【答案】B
【解析】由已知得,当点P在边上运动时,即OKxW工时,PA+PB=Vtan2x+4+tanx;当
4
点尸在CD边上运动时,即工包,X。巳时,PA+PB=,(——―1)2+1+.(―+1)2+1,当
442\tanxVtanx
龙=工时,PA+PB=20;当点P在边上运动时,即至万时,PA+PB=y/tan2x+4-tanx,
24
从点P的运动过程可以看出,轨迹关于直线%=生对称,且/(?)>/(]),且轨迹非线型,故选B.
考向九、数形结合,根据不等式恒成立求参数或解不等式
3
典例15.(2019•河南省鲁山县第一高级中学高一月考)若关于x的不等式4"—在
上恒成立,则实数a的取值范围是()
A.Ri]氏N,;[C.g]D.
L4JI4」|_4JI4」
【答案】A
【解析】
由题意得4'--Wlog,x在xG(0,1上恒成立,
2I2」
(113
即当时,函数丫=4'-5的图象不在y=log.x图象的上方,
31
由图知:当a>l时,函数y=4"—5(0<%«5)的图象在y=log.x图象的上方;
111
当OVaVl时,log2>-,解得一.
6a24
故选:A.
典例16.(2019•敦煌中学高考模拟(文))已知奇函数/(x)在xNO时的图象如图所示,则不等式
4(x)<0的解集为()
A.(1,2)B.(-2,-1)u(l,2)c.(-2,-1)D.(-1,1)
【答案】B
【解析】
Vxf(x)V0则:当x>0时,f(x)<0,结合函数的图象可得,l<x<2,当xVO时,f(x)>0,
根据奇函数的图象关于原点对称可得,-2VxVT,.•.不等式xf(x)<0的解集为(-2,-1)U(1,2).故
答案为(-2,-1)U(1,2).
1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:
一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象
来直观地说明函数的性质:二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,
形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
2.运用数形结合思想分析解决问题时;要遵循三个原则:
(1)等价性原则.在数形结.合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有
时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要
注意其带来的负面效应.
(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分
析容易出错.
(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;
二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值
范围,特别是运用函数图象时应设法选择动直线与定二次曲线.
3.数形结合思想在高考试题中主要有以下六个常考点
(1)集合的运算及Venn图;
(2)函数及其图象;
(3)数列通项及求和公式的函数特征及函数图象;
(4)方程(多指二元方程)及方程的曲线;
(5)对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;
(6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点、顶点是关
键点),做好知识的迁移与综合运用.
4.数形结合思想常用模型:一次、二次函数图象;斜率公式;两点间的距离公式(或向量的模、复数
的模);点到直线的距离公式等.
5.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇
特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以
下几点:
(1)准确画出函数图象,注意函数的定义域;
(2)用图象法讨.论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首
先.要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个
函数的图象,由图求解;
(3)在解答题中数形结合思想是探究解题的思路时使用的,不可使用形的直观代替相关的计算和推理
论证.
典例17.(2019.夏津第一中学高三月考)已知函数/(x)是定义在[T,0)D(0,4]上的奇函数,当
xe(O,4]时,的图象如图所示,那么满足不等式/(x)N3'—1的x的取值范围是().
A.[-1,-2][2,1]B.[-A-2][0,1]
C.[T-2][2,4]D.[-1,0)[2,4]
【答案】B
【解析】
Q
/(X)为[T,0)u(0,4]上的奇函数,所以如图,画出/(X)在[-4,0)的图象,得点(一2,-1)、点(1.2)
在,(x)上,
画出y=3'-l的图象,得到其渐近线为丁=-1,且在第一象限与的图象交点为(L2),要解不等
式则结合图象,需f(x)的图象在y=3,-1图象的上方,从而解得:XG[-4,-2]U[0,1].
故选:B.
典例18.(2019•甘肃高考模拟(文))定义在R上的偶函数Ax)满足/(x-D=/(x+l),且当
xef-1,0]时,/(x)=%2,函数g(x)是定义在R上的奇函数,当x>0时,g(x)=lgx,则函数
〃(x)=/(x)-g(x)的零点的的个数是()
A.9B.10C.11D.12
【答案】C
【解析】
由于/(x—l)=/(x+l),所以,函数y=/(x)的周期为2,且函数y=/(无)为偶函数,
由〃(力=0,得出/(x)=g(x),问题转化为函数y=/(x)与函数y=g(x)图象的交点个数,作出
函数y=与函数N=g(x)的图象如下图所示,
由图象可知,00(x)Wl,当%>10时,g(x)=lgx>l,
则函数y=/(x)与函数y=g(x)在(10,+oo)上没有交点,
结合图像可知,函数,=/(")与函数,=8(力图象共有11个交点,故选:C.
m
典例19.(2019•全国高三专题练习(理))已知函数/(x)=xe'—/nr+5(e为自然对数的底数)在
(0,+8)上有两个零点,则的范围是()
A.(0,e)B.(0,2e)C.(e,+oo)D.(2e,+oo)
【答案】D
【解析】
jrimI
由/(%)=xex-=0得xe"=mx---=m(x——),
222
当X=L时,方程不成立,即XX4,
22
xex
则机=-T,
h(x)=----/八口1、
设1(%>0且不。不),
x——2
—cx(x-1)(2尤+1)
•••x>0且xw,,...由〃(x)=0得X=l,
2
当x>l时,A'(x)>0,函数为增函数,
当0<x<l且xwg时,A'(x)<0,函数为减函数,
则当x=l时函数取得极小值,极小值为//(D=2e,
当0<x<,时,〃(x)<0,且单调递减,作出函数〃(x)的图象如图:
2
要使机=-T有两个不同的根,
X——
则〃?>2e即可,
即实数m的取值范围是(2e,T8),
=mx--=m(x--),
22
设g(尤)=xe',/i(x)=m(x--),
g'(x)=ex+xex=(x+l)ex,当尤>0时,g'(x)>0,则g(x)为增函数,
设=-与g(x)=xe",相切时的切点为(a,ae"),切线斜率&=(。+l)e",
则切线方程为y-aea=(a+l)ea(x-a),
当切线过(L,0)时,-aea=(a+1)ea(--a),
22
IlIJ—a=—ciH---—a,即2a2—a—1=0,得a=l或a=—(舍),则切线斜率攵=(l+l)e=2e,
222
要使g(x)与h{x)在(0,+oo)上有两个不同的交点,则机>2e,
即实数m的取值范围是(2e,+R).
典例20.(2018届湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校考试联盟”高三2月联考)
2x+y>2
尸(乂))满足{%-丁一140,则/+尸的最小值为.
x+2y<4
4
【答案】-
5
X2+y2的表示可行域上的点到原点的距离的平方,其最小值显然是原点到直线AC距离的平方:
0+0-2?4
,4+1J5
4
故答案为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调保修合同范本
- 制衣生产合同标准文本
- 出口篷布采购合同标准文本
- 广东省汕头市潮南区司马浦镇重点中学2023-2024学年中考数学仿真试卷含解析
- 2025福建省安全员考试题库及答案
- 海水直接利用设施行业直播电商战略研究报告
- 钢枕企业制定与实施新质生产力战略研究报告
- 兼职代理记账合同样本
- 配页机行业直播电商战略研究报告
- 钢铁制推拉门行业直播电商战略研究报告
- 肺动脉高压的指南分类及精选课件
- 自考06216中外建筑史大纲知识点汇总
- C139营销模型简介(含案例)课件
- x-net运动总线手册
- 桥梁加固改造工程施工质量管理体系与措施
- 第二十六章慢性肾小球肾炎演示文稿
- 设施设备维修记录表
- 自动化设备检修规程
- 新疆主要造林树种苗木质量分级
- 单片机控制led灯实验总结
- 帕金森患者的麻醉课件
评论
0/150
提交评论