湖北省荆州市石首金平中学高一数学理测试题含解析_第1页
湖北省荆州市石首金平中学高一数学理测试题含解析_第2页
湖北省荆州市石首金平中学高一数学理测试题含解析_第3页
湖北省荆州市石首金平中学高一数学理测试题含解析_第4页
湖北省荆州市石首金平中学高一数学理测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆州市石首金平中学高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,,若=,,则=(

)(用,表示)A.-

B.

C.

D.参考答案:D略2.已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若,则=()A. B. C.1 D.2参考答案:B【分析】利用正弦定理化边为角,可求得,从而可得答案.【详解】由题意,因为,根据正弦定理可得,,即,所以,则.故选:B.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练灵活应用正弦定理的边角互化是解答的关键,着重考查了推理与运算能力,属于基础题.

3.已知是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若;②若;③若α//β,mα,nβ,则m//n;④若若m⊥α,n⊥β,m//n,则α//β其中正确的命题是

A.①②

B.②③

C.③④

D.①④参考答案:D4.已知,则(

)A.

B.

C.

D.参考答案:C5.若将函数y=cos(2x﹣)的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,则所得函数图象的一条对称轴为()A.x= B.x= C.x= D.x=参考答案:D【分析】利用函数y=Asin(ωx+φ)的图象变换规律求出所得函数的解析式,再利用余弦函数的图象的对称性,求得所得函数图象的一条对称轴.【解答】解:将函数y=cos(2x﹣)的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos(x﹣)的图象;再向右平移个单位,可得y=cos(x﹣﹣)=cos(x﹣)的图象,令x﹣=kπ,求得x=kπ+,k∈Z.令k=0,可得所得函数图象的一条对称轴为得x=,故选:D.6.已知f(x)=ax7﹣bx5+cx3+2,且f(﹣5)=m则f(5)+f(﹣5)的值为(

)A.4 B.0 C.2m D.﹣m+4参考答案:A【考点】函数奇偶性的性质.【专题】计算题.【分析】由题意设g(x)=ax7﹣bx5+cx3,则得到g(﹣x)=﹣g(x),即g(5)+g(﹣5)=0,求出f(5)+f(﹣5)的值.【解答】解:设g(x)=ax7﹣bx5+cx3,则g(﹣x)=﹣ax7+bx5﹣cx3=﹣g(x),∴g(5)=﹣g(﹣5),即g(5)+g(﹣5)=0∴f(5)+f(﹣5)=g(5)+g(﹣5)+4=4,故选A.【点评】本题考查了利用函数的奇偶性求值,根据函数解析式构造函数,再由函数的奇偶性对应的关系式求值.7.已知,则

)A.

B.

C.

D.参考答案:B略8.在中,若,则是(

)A.等腰三角形

B.直角三角形

C.等腰或直角三角形

D.钝角三角形参考答案:B9.函数的值域是()

A.[-1,1]B.[-2,2]C.[0,2]D.[0,1]

参考答案:解析:对于含有绝对值的三角函数,基本解题策略之一是将其化为分段函数,而后分段考察,综合结论,在这里,当x≥0时,-2≤2sinx≤2即-2≤y≤2;当x<0时,y=0包含于[-2,2].

于是可知所求函数值域为[-2,2],故应选B.10.(5分)圆的方程为x2+y2+kx+2y+k2=0,当圆面积最大时,圆心坐标为() A. (﹣1,1) B. (1,﹣1) C. (﹣1,0) D. (0,﹣1)参考答案:D考点: 圆的一般方程.专题: 直线与圆.分析: 若圆面积最大时,则半径最大,求出k的值,即可得到结论.解答: 当圆面积最大时,半径最大,此时半径r==,∴当k=0时,半径径r=最大,此时圆心坐标为(0,﹣1),故选:D点评: 本题主要考查圆的一般方程的应用,根据条件求出k的值是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.函数的图像先作关于轴对称得到图像,再将向右平移一个单位得到图像,则的解析式为

.参考答案:12.满足条件的集合A的个数是 参考答案:413.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,则f(2)=. 参考答案:【考点】抽象函数及其应用;函数的值. 【分析】根据题意,将x=2、x=﹣2分别代入f(x)+g(x)=ax﹣a﹣x+2可得,f(2)+g(2)=a2﹣a﹣2+2,①和f(﹣2)+g(﹣2)=a﹣2﹣a2+2,②,结合题意中函数奇偶性可得f(﹣2)+g(﹣2)=﹣f(2)+g(2),与②联立可得﹣f(2)+g(2)=a﹣2﹣a2+2,③,联立①③可得,g(2)、f(2)的值,结合题意,可得a的值,将a的值代入f(2)=a2﹣a﹣2中,计算可得答案. 【解答】解:根据题意,由f(x)+g(x)=ax﹣a﹣x+2, 则f(2)+g(2)=a2﹣a﹣2+2,①,f(﹣2)+g(﹣2)=a﹣2﹣a2+2,② 又由f(x)为奇函数而g(x)为偶函数,有f(﹣2)=﹣f(2),g(﹣2)=g(2), 则f(﹣2)+g(﹣2)=﹣f(2)+g(2), 即有﹣f(2)+g(2)=a﹣2﹣a2+2,③ 联立①③可得,g(2)=2,f(2)=a2﹣a﹣2 又由g(2)=a,则a=2, f(2)=22﹣2﹣2=4﹣=; 故答案为. 【点评】本题考查函数奇偶性的应用,关键是利用函数奇偶性构造关于f(2)、g(2)的方程组,求出a的值. 14.(5分)某工厂12年来某产品总产量S与时间t(年)的函数关系如图所示,下列四种说法:(1)前三年总产量增长的速度越来越快;(2)前三年总产量增长的速度越来越慢;(3)第3年后至第8年这种产品停止生产了;(4)第8年后至第12年间总产量匀速增加.其中正确的说法是

.参考答案:(2)(3)(4)考点: 函数的图象与图象变化.专题: 应用题.分析: 从左向右看图象,利用如下结论:如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.解答: 由函数图象可知在区间上,图象图象凸起上升的,表明年产量增长速度越来越慢;故(1)对(2)错,在区间(3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0.在区间(8,12]上,图象是直线上升的,表明第8年后至第12年间总产量匀速增加;∴(2)(3)(4)正确故答案为:(2)(3)(4)点评: 由图象分析相应的量的变化趋势,关键是要总结相应的量发生变化时对应图象的形状,分析过程中所列示的7种情况,要熟练掌握,以达到灵活应用的目的.15.底面边长为1,棱长为的正三棱柱,各顶点均为在同一球面上,则该球的体积为

.参考答案:16.n个连续正整数的和等于3000,则满足条件的n的取值构成集合{

}参考答案:{1,3,5,15,16,25,48,75}17.已知向量,若,则λ=.参考答案:﹣6【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】根据向量垂直的条件得到=2×3+1×λ=0,解得即可.【解答】解:∵向量,,∴=2×3+1×λ=0,∴λ=﹣6,故答案为:﹣6.【点评】本题考查了向量垂直的条件和向量的数量积的运算,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设常数a∈R,函数(1)若a=1,求f(x)的单调区间(2)若f(x)为奇函数,且关于x的不等式对所有恒成立,求实数m的取值范围(3)当a<0时,若方程有三个不相等的实数根,求实数a的值.参考答案:(1)

(2)

(3)19.有一堆规格相同的铁制(铁的密度是7.8g/cm3)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(π取3.14)?参考答案:【考点】LF:棱柱、棱锥、棱台的体积.【分析】由体积公式得出一个六角螺帽毛坯的体积为(6××1.22﹣)×1≈2.956(cm3).再运用密度公式求解单个的质量,由总质量除以单个的质量即可得答案.【解答】解:一个六角螺帽毛坯的体积为(6××1.22﹣)×1≈2.956(cm3).∴螺帽的个数为:5.8×1000÷(7.8×2.956)≈252(个).答:这堆螺帽大约有252个.20.如图,某河段的两岸可视为平行,为了测量该河段的宽度,在河的一边选取两点A、B,观察对岸的点C,测得∠CAB=75°,∠CBA=45°,且AB=100米.(1)求sin75°;(2)求该河段的宽度.参考答案:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°21.已知点,圆.(1)求过点M且与圆C相切的直线方程;(2)若直线与圆C相交于A,B两点,且弦AB的长为,求实数a的值.参考答案:(1)或;(2).【分析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可.【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力.22.(10分)设全集为U=R,集合A={x|(x+3)(4﹣x)≤0},B={x|log2(x+2)<3}(1)求A∩?UB(2)已知C={x|2a<x<a+1},若C?B,求实数a的取值范围.参考答案:考点: 集合的包含关系判断及应用;交、并、补集的混合运算.专题: 计算题;集合.分析: (1)首先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论