版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年初一上册数学专项练习有理数的意义【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3.掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、、+584等大于0的数,叫做正数;像-3、-1.5、、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略.(2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的分界线.要点二、有理数的分类(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:
要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】类型一、正数与负数 1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元【思路点拨】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【答案】C【解析】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【总结升华】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.举一反三:【变式1】一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克B.50.3千克C.49.7千克D.49.1千克【答案】D.解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.【变式2】(1)如果收入300元记作+300元,那么支出500元用___________表示,0元表示__________.(2)若购进50本书,用-50本表示,则盈利30元如何表示?【答案】(1)-500元;既没有收入也没有支出.(2)不是一对具有相反意义的量,不能表示.
【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().
A.-20mB.-40mC.20mD.40m
【答案】B2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0这8名男生有百分之几达到标准?他们共做了多少引体向上?【答案与解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:;答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.【总结升华】一定要先弄清“基准”是什么.类型二、有理数的分类3.下面说法中正确的是().A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.一定是负数. D.正整数和正分数统称正有理数.【答案】D【解析】(A)不对,因为非负数还包括0;(B)最小的正整数为1,但没有最小的正有理数;(C)不对,当为负数或0时,则为正数或0,而不是负数;(D)对【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.举一反三:【变式1】判断题:(1)0是自然数,也是偶数.()(2)0既可以看作是正数,也可以看成是负数.()(3)整数又叫自然数.()(4)非负数就是正数,非正数就是负数.()【答案】√,,,【变式2】下列四种说法,正确的是().
(A)所有的正数都是整数(B)不是正数的数一定是负数
(C)正有理数包括整数和分数(D)0不是最小的有理数【答案】D4.请把下列各数填入它所属于的集合的大括号里.
1,0.0708,-700,-3.88,0,3.14159265,,.
正整数集合:{…},负整数集合:{…},
整数集合:{…},正分数集合:{…},负分数集合:{…},分数集合:{…},非负数集合:{…},非正数集合:{…}.【答案】正整数:1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,;
负分数:-3.88,;分数:0.0708,3.14159265,,-3.88,;非负数:1,0.0708,3.14159265,0,;非正数:-700,-3.88,0,【解析】【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数.举一反三:【变式】在有理数、﹣5、3.14中,属于分数的个数共有个.【答案】2.类型三、探索规律5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,.按此规律,那么请你推测第n组应该有种子是粒.【答案】()【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:,,,,,按此规律,第n组应该有种子数()粒.【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关.举一反三:【变式1】有一组数列:2,-3,2,-3,2,-3,,根据这个规律,那么第2010个数是:【答案】-3【变式2】观察下列有规律的数:根据其规律可知第9个数是:【答案】有理数与无理数知识讲解【学习目标】理解有理数的意义,知道无理数是客观存在的,了解无理数的概念.会判断一个数是有理数还是无理数.【要点梳理】要点一、有理数我们把能够写成分数形式(m,n是整数,n≠0)的数叫做有理数.要点诠释:(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.要点二、无理数1.定义:无限不循环小数叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含类.②看似循环而实质不循环的数,如:1.313113111…….2.有理数与无理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.要点三、循环小数化分数1.定义:如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数,其中重复出现的一个或几个数字叫做它的一个循环节.2.纯循环小数从小数点后面第一位起就开始循环的小数,叫做纯循环小数.例如:0.666…、..纯循环小数化为分数的方法是:分子是一个循环节的数字组成的数;分母的各位数字都是9,9的个数等于一个循环节的位数.例如,.3.混循环小数如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:、0.3456456….混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.例如,,.要点诠释:(1)任何一个循环小数都可化为分数.(2)混循环小数化分数也可以先化为纯循环小数,然后再化为分数.【典型例题】类型一、有理数 1.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫做无理数【答案】B【解析】A选项整数包括正整数、负整数和0;C选项正有理数、负有理数和0统称有理数;D选项无限不循环小数才叫做无理数,所以选B.【总结升华】概念问题同学们往往忽略0的存在而模糊分类的界限,只有对定义达到真正的理解认识才不会出错.举一反三:【变式1】下列说法:①一个有理数不是整数就是分数;②有理数包括正有理数和负有理数;
③分数可分为正分数和负分数;④存在最大的负整数;⑤不存在最小的正有理数.其中正确的个数是()A.2个B.3个C.4个D.5个【答案】C【变式2】是()A.整数B.有限小数C.无限循环小数D.无限不循环小数【答案】C2.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个【思路点拨】根据有理数是有限小数或无限循环小数,可得答案.【答案】D【解析】解:,0,,﹣1.414,是有理数,【总结升华】本题考查了有理数,有理数是有限小数或无限循环小数.类型二、无理数3.下列实数中,是无理数的为()A.﹣4 B.0.101001 C. D.【思路点拨】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【答案】D【解析】解:A、﹣4是整数,是有理数,故本选项不符合题意;B、0.101001是小数,属于分数,故本选项不符合题意;C、是小数,属于分数,故本选项不符合题意;D、是无理数,正确;故选D.【总结升华】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.举一反三:【变式】以下各正方形的边长是无理数的是(
)A.面积为25的正方形;
B.面积为16的正方形;C.面积为8的正方形;
D.面积为1.44的正方形.【答案】C4.将下列各数填入相应的括号内,-2,,3.020020002…,0,,-(-2),2012,-整数集合: 分数集合: 负有理数集合: 无理数集合: 【答案与解析】整数集合:-2,0,-(-2),2012分数集合:,,-负有理数集合:-2,,-无理数集合:,3.020020002…,【总结升华】本题考查了对有理数的有关概念的理解和应用,关键是能区分有关定义,注意:整数包括正整数、0、负整数;有理数包括正有理数、0、负有理数;无理数是指无限不循环小数.类型三、循环小数化分数5.把下列循环小数化分数【思路点拨】按循环小数化分数的规律方法化即可.【答案与解析】(1)(2),所以(3)(4)【总结升华】循环小数化分数时,整数部分不动,在掌握两种化简规律的基础上把小数部分进行相应的化简即可.举一反三:【变式】在6.4040…、3.333、9.505三个数中,是循环小数,把这个数化为分数可以写作.【答案】6.4040…;数轴——知识讲解【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如.要点诠释:
(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.
(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.【典型例题】类型一、数轴的概念及画法1.下列各图中,能正确表示数轴的是()A. B. C. D.【思路点拨】根据数轴的三要素:原点、正方向、单位长度,即可解答.【答案】D
【解析】解:由数轴的三要素:原点、正方向、单位长度,可知D正确;故选:D.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.2.一只蚂蚁沿数轴从点A向右直爬15个单位到达点B,点B表示的数为﹣2,则点A所表示的数为()A.15B.13C.-13D.-17【答案】D【解析】设点A所表示的数为x,x+15=﹣2,解得:x=﹣17,故选:D.【总结升华】本题考查的是数轴的知识,掌握数轴的概念和性质是解题的关键,点在数轴上的运动规律是向左减,向右加.举一反三:【变式】如图为北京地铁的部分线路.假设各站之间的距离相等且都表示为一个单位长.现以万寿路站为原点,向右的方向为正,那么木樨地站表示的数为________,古城站表示的数为__
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电商平台客户数据保密及隐私保护合同3篇
- 二零二五版农业产业化合同管理与农产品质量安全协议3篇
- 二零二五版智能广告终端设备投放与维护合同3篇
- 二零二五年绿色环保抵押贷款合同范本分享3篇
- 二零二五版一期临床试验统计分析合同3篇
- 二零二五年度辣椒种植与冷链物流运输合同3篇
- 二零二五版餐厅智能点餐系统维护与升级合同3篇
- 二零二五年度餐饮企业承包经营与品牌升级合同3篇
- 二零二五版智能签约二手房购房合同范本2篇
- 二零二五版新能源汽车电池购销合同样本3篇
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 交通运输安全生产管理规范
- 电力行业 电力施工组织设计(施工方案)
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 查对制度 课件
- 2024-2030年中国猪肉市场销售规模及竞争前景预测报告~
评论
0/150
提交评论