2024微软人工智能系统强化学习_第1页
2024微软人工智能系统强化学习_第2页
2024微软人工智能系统强化学习_第3页
2024微软人工智能系统强化学习_第4页
2024微软人工智能系统强化学习_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 signal

observation&reward

RealworldenvironmentAgent historyinfo

simulatorEachtimesteptAgentanaction𝑎𝑡Worldupdatesgivenactionat,emitsobservationandAgentreceivesobservationandUseexperiencetoguidefuturedecisions(exploit)signal

observation&reward

RealworldenvironmentAgent historyinfo

simulatorHistoryℎ𝑡=(𝑎1,...,𝑎𝑡,𝑜𝑡,AgentchoosesactionbasedonhistoryisinformationassumedtodeterminewhathappensnextFunctionhistory=(ℎ𝑡)Stateisifandonlyif p(𝑠𝑡+1|,𝑎𝑡)=p(𝑠𝑡+1|ℎ𝑡,𝑎𝑡)Goalselectactionstomaximizetotalexpectedfuturerewardbalancingimmediate&long-termrewardsπdetermineshowtheagentchoosesactionsDeterministicpolicyStochasticpolicyfunctionexpecteddiscountedsumfuturerewardsunderapolicyπ initializeenvPolicymodelinitializeenvPolicymodelinitializepolicyPolicyinferenceinitializepolicyRolloutdataRolloutdataPolicyupdateUpdatepolicyUpdatepolicyHessel,Matteo,etal."Rainbow:Combiningimprovementsindeepreinforcementlearning."——给PPO带来真正的性能上提升以及将policy约束在trustregion内的效果,都不是通过PPO论文中提出的对新的policy和原policy的比值进行裁切(clip)带来的,而是通过code-level的一些技巧带来的。Engstrom,Logan,etal."Implementationmattersindeeppolicygradients:AcasestudyonPPOandTRPO."Liang,Eric,etal."Rayrllib:Acomposableandscalablereinforcementlearninglibrary."Liang,Eric,etal."Rayrllib:Acomposableandscalablereinforcementlearninglibrary."新算法新算法新架构 难以复用的强化学习代码

可扩展性的强化学习框架 TrainingDataMLModelTrainingDataMLModelTrainingsignalθ

observation&reward

RealworldenvironmentAgent historyinfo

simulator面临的问题面临的问题新的需求Horgan,Dan,etal."Distributedprioritizedexperiencereplay."可能传输大量的数据可能传输大量的数据GPUCPU面临的问题面临的问题可能的解决方案 通用的RL算法针对Env开发支持分布式Star数目RepoACME+Reverb2.1k/deepmind/acmeELF2k/facebookresearch/ELFRay+RLlib16.4k/ray-project/rayGym24.5k/openai/gymBaselines11.6k/openai/baselinesTorchBeast553/facebookresearch/torchbeastSeedRL617/google-research/seed_rlTianshuo?3.2k/thu-ml/tianshouKeras-RL5.1k/keras-rl/keras-rlRayisafastandsimpleframeworkforbuildingandrunningdistributedapplications./ray-project/ray Rayisafastandsimpleframeworkforbuildingandrunningdistributedapplications.AprocessexecutingtheuserprogramAstatelessprocessthatexecutesremotefunctionsinvokedbyadriverAstatefulprocessthatexecutesDistributedobjectIn-memorydistributedstoragetostoretheinputs/outputs,orstatelesscomputation.ImplementtheobjectstoreviasharedmemoryUseApacheArrowasdataformatsDistributedschedulerSubmittedfirsttolocalschedulerGlobalschedulerconsiderseachloadandconstraintstoschedulingdecisionsGlobalControlAkey-valuestorewithpub-subfunctionalityRLlibisanopen-sourcelibraryforreinforcementlearningthatoffersbothhighscalabilityandaunifiedAPIforavarietyofapplications.RayRayRLlib/ray-project/ray/tree/master/rllib distributedschedulerisanaturalfitforthehierarchicalcontrolmodel,asnestedcomputationcanbeimplementedinRaywithnocentraltaskschedulingbottleneck.Hierarchicalcontrol Actors/Workers RunscriptRemotedecoratorforruninremote InitrayRemotedecoratorforruninremoteInitrayExecutethetrainerandactorinremoteExecutethetrainerandactorinremoteStartthreadforasyncStartthreadforasynctrainingsignal

observation&reward

RealworldenvironmentAgent historyinfo

simulatorPolicyGraphPolicyModelPolicyOptimizerPolicyGraphPolicyModelPolicyOptimizerThepolicyoptimizerisresponsiblefortheperformance-criticaltasksofdistributedsampling,parameterupdates,andmanagingPolicyGraphPolicyModelPolicyOptimizerPseudocodeforfourRLlibpolicyoptimizerstepmethods.Eachstep()operatesalocalpolicygraphandarrayofremoteevaluatorreplicas. Serializationanddeserializationarebottlenecksinparallelanddistributedcomputing,especiallyinmachinelearningapplicationswithlargeobjectsandlargequantitiesofdata.Goalsefficientwithlargenumericaldata(e.g.NumpyandPandasdataframes)AsasPicklePythontypesCompatiblewithsharedmemory(allowingmultipleprocessestousethesamewithoutcopyingit)Deserializationshouldbeextremelylanguageindependent Makingdeserializationfastisimportant.AnobjectmaybeserializedonceandthendeserializedmanytimesAcommonpatternisformanyobjectstobeserializedinparallelandthenaggregatedanddeserializedoneatatimeonasingleworkermakingdeserializationthebottleneckDeserializationisfastandbarelyvisibleUsingonlytheschema,cancomputetheoffsetseachvalueinthedatablobwithoutscanningthroughthedatablob(unlikePickle,thisiswhatenablesfastdeserialization)copyingorotherwiseconvertinglargearraysandothervaluesduringdeserializat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论