甘肃省定西市陇西二中2024届高三第六次模拟考试数学试卷含解析_第1页
甘肃省定西市陇西二中2024届高三第六次模拟考试数学试卷含解析_第2页
甘肃省定西市陇西二中2024届高三第六次模拟考试数学试卷含解析_第3页
甘肃省定西市陇西二中2024届高三第六次模拟考试数学试卷含解析_第4页
甘肃省定西市陇西二中2024届高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省定西市陇西二中2024届高三第六次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集,集合,.则集合等于()A. B. C. D.2.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.83.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.4.的展开式中,项的系数为()A.-23 B.17 C.20 D.635.已知函数,若不等式对任意的恒成立,则实数k的取值范围是()A. B. C. D.6.已知函数,若,且,则的取值范围为()A. B. C. D.7.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.38.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.89.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.10.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.128011.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.12.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,若恒成立,则实数的取值范围是____.14.已知,,且,则的最小值是______.15.如图是一个算法伪代码,则输出的的值为_______________.16.假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.18.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.19.(12分)已知函数(是自然对数的底数,).(1)求函数的图象在处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围;(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).20.(12分)已知函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.21.(12分)设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若函数的图象与直线所围成的四边形面积大于20,求的取值范围.22.(10分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.2、A【解析】

由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、C【解析】

利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.4、B【解析】

根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则①出,则出,该项为:;②出,则出,该项为:;③出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.5、A【解析】

先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.6、A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.7、B【解析】

过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.8、A【解析】

先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.9、C【解析】

根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.10、A【解析】

根据二项式展开式的公式得到具体为:化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.11、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.12、D【解析】

由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值14、1【解析】

先将前两项利用基本不等式去掉,,再处理只含的算式即可.【详解】解:,因为,所以,所以,当且仅当,,时等号成立,故答案为:1.【点睛】本题主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题.15、5【解析】

执行循环结构流程图,即得结果.【详解】执行循环结构流程图得,结束循环,输出.【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.16、1【解析】

按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可.【详解】9元的支付有两种情况,或者,①当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;②当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;所以总的支付方式共有种.故答案为:1.【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题.做题时注意分类做到不重不漏,分步做到步骤完整.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值.设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.试题解析:解:(1)因为椭圆的方程为,所以,.因为轴,所以,而直线与圆相切,根据对称性,可取,则直线的方程为,即.由圆与直线相切,得,所以圆的方程为.(2)易知,圆的方程为.①当轴时,,所以,此时得直线被圆截得的弦长为.②当与轴不垂直时,设直线的方程为,,首先由,得,即,所以(*).联立,消去,得,将代入(*)式,得.由于圆心到直线的距离为,所以直线被圆截得的弦长为,故当时,有最大值为.综上,因为,所以直线被圆截得的弦长的最大值为.考点:直线与圆位置关系18、(1),(2)【解析】

(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.19、(1);(2);(3).【解析】

(1)利用导数的几何意义计算即可;(2)在上恒成立,只需,注意到;(3)在上有两根,令,求导可得在上单调递减,在上单调递增,所以且,,,求出的范围即可.【详解】(1)因为,所以,当时,,所以切线方程为,即.(2),.因为函数在区间上单调递增,所以,且恒成立,即,所以,即,又,故,所以实数的取值范围是.(3).因为函数在区间上有两个极值点,所以方程在上有两不等实根,即.令,则,由,得,所以在上单调递减,在上单调递增,所以,解得且.又由,所以,且当和时,单调递增,当时,单调递减,是极值点,此时令,则,所以在上单调递减,所以.因为恒成立,所以.若,取,则,所以.令,则,.当时,;当时,.所以,所以在上单调递增,所以,即存在使得,不合题意.满足条件的的最小值为-4.【点睛】本题考查导数的综合应用,涉及到导数的几何意义,利用导数研究函数的单调性、极值点,不等式恒成立等知识,是一道难题.20、(1)(2)为减函数,为增函数.(3)证明见解析【解析】

(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);(2)求函数的导数,由导数的正负确定单调性;(3)不等式变形为,由递减,得(),即,即,依次放缩,.不等式,递增得(),,,,先证,然后同样放缩得出结论.【详解】解:(1)对求导,得.因此.又因为,所以曲线在点处的切线方程为,即.由题意,.显然,适合上式.令,求导得,因此为增函数:故是唯一解.(2)由(1)可知,,因为,所以为减函数.因为,所以为增函数.(3)证明:由,易得.由(2)可知,在上为减函数.因此,当时,,即.令,得,即.因此,当时,.所以成立.下面证明:.由(2)可知,在上为增函数.因此,当时,,即.因此,即.令,得,即.当时,.因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论