福建省龙岩市龙岩一中2024届高考数学全真模拟密押卷含解析_第1页
福建省龙岩市龙岩一中2024届高考数学全真模拟密押卷含解析_第2页
福建省龙岩市龙岩一中2024届高考数学全真模拟密押卷含解析_第3页
福建省龙岩市龙岩一中2024届高考数学全真模拟密押卷含解析_第4页
福建省龙岩市龙岩一中2024届高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市龙岩一中2024届高考数学全真模拟密押卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.2.若(),,则()A.0或2 B.0 C.1或2 D.13.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或4.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线5.设全集,集合,则=()A. B. C. D.6.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.47.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.98.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A. B.C. D.9.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“-”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.1510.设全集U=R,集合,则()A. B. C. D.11.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.12.函数的图像大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.14.抛物线的焦点到准线的距离为.15.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.16.在中,,是的角平分线,设,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,均为正数,且.证明:(1);(2).18.(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.19.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.20.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.21.(12分)已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.22.(10分)如图,在直三棱柱中,,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.2、A【解析】

利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.3、D【解析】

由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.4、C【解析】

充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.5、A【解析】

先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.6、C【解析】

设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.7、D【解析】

根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【详解】∵是定义是上的奇函数,满足,,可得,

函数的周期为3,

∵当时,,

令,则,解得或1,

又∵函数是定义域为的奇函数,

∴在区间上,有.

由,取,得,得,

∴.

又∵函数是周期为3的周期函数,

∴方程=0在区间上的解有共9个,

故选D.【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.8、A【解析】

设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,,其中,,即关于轴对称故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.9、B【解析】

由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B.【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.10、A【解析】

求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.11、A【解析】

根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.12、A【解析】

根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.14、【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质.15、4【解析】

由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的16、【解析】

设,,,由,用面积公式表示面积可得到,利用,即得解.【详解】设,,,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)由进行变换,得到,两边开方并化简,证得不等式成立.(2)将化为,然后利用基本不等式,证得不等式成立.【详解】(1),两边加上得,即,当且仅当时取等号,∴.(2).当且仅当时取等号.【点睛】本小题主要考查利用基本不等式证明不等式成立,考查化归与转化的数学思想方法,属于中档题.18、(1)元.(2)①②万元【解析】

(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即为平均销售利润;(2)①对取自然对数,得,令,,,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;②求出收益,可设换元后用导数求出最大值.【详解】解:(1)设每件产品的销售利润为,则的可能取值为,,.由频率分布直方图可得产品为劣质品、优等品、特优品的概率分别为、、.所以;;.所以的分布列为所以(元).即每件产品的平均销售利润为元.(2)①由,得,令,,,则,由表中数据可得,则,所以,即,因为取,所以,故所求的回归方程为.②设年收益为万元,则令,则,,当时,,当时,,所以当,即时,有最大值.即该企业每年应该投入万元营销费,能使得该企业的年收益的预报值达到最大,最大收益为万元.【点睛】本题考查频率分布直方图,考查随机变量概率分布列与期望,考查求线性回归直线方程,及回归方程的应用.在求指数型回归方程时,可通过取对数的方法转化为求线性回归直线方程,然后再求出指数型回归方程.19、(1)见解析;(2)【解析】

(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;【详解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因为平面,所以,又,所以平面,所以,又,所以.若平面平面,则平面,所以,由且,又,所以.以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,则,,设则由,可得,,即,所以可得,所以,设平面的一个法向量为,则,,,取,得所以易知平面的法向量为,设平面与平面所成的二面角为,则,结合图形可知平面与平面所成的二面角的余弦值为.【点睛】本题考查线面平行的判定定理及性质定理的应用,利用空间向量法求二面角,解题时要认真审题,注意空间思维能力的培养,属于中档题.20、(1)极大值是,无极小值;(2)【解析】

(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;【详解】(1)当时,.令,则,显然在上单调递减,又因为,故时,总有,所以在上单调递减.由于,所以当时,;当时,.当变化时,的变化情况如下表:+-增极大减所以在上的极大值是,无极小值.(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.由,,可得又.将其代入上式得:.整理得,即当时,不等式恒成立,即.当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.当时,恒成立,即,因此,当时,所以.综上所述,.【点睛】本题考查利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论