立方根教学设计人教版_第1页
立方根教学设计人教版_第2页
立方根教学设计人教版_第3页
立方根教学设计人教版_第4页
立方根教学设计人教版_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

立方根教学设计人教版第第页立方根教学设计人教版(经典版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体会、其他范文等等,想了解不同范文格式和写法,敬请关注!Downloadtips:Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!Inaddition,thisshopprovidesyouwithvarioustypesofclassicsampleessays,suchaspreschoollessonplans,elementaryschoollessonplans,middleschoollessonplans,teachingactivities,comments,messages,speechdrafts,workplans,worksummary,experience,andothersampleessays,etc.IwanttoknowPleasepayattentiontothedifferentformatandwritingstylesofsampleessays!立方根教学设计人教版全文共1页,当前为第1页。立方根教学设计人教版全文共1页,当前为第1页。立方根教学设计人教版立方根教学设计人教版全文共2页,当前为第2页。

这是立方根教学设计人教版,是优秀的数学教案文章,供老师家长们参考学习。

立方根教学设计人教版第1篇

教学目标

(1)了解立方根的概念.

(2)会求一些数的立方根.

2重点难点

引导学生类比平方根学习立方根的概念和求法.

3教学过程3.1第一学时教学活动活动1【导入】立方根

你还记得什么是平方根吗?

平方根具有什么特征?

活动2【讲授】立方根

要制作一种容积为27m³的正方体形状的包装箱,这种包装箱的棱长应该是多少?

你还记得正方体的体积与棱长有什么关系吗?

如果设这种包装箱的棱长为xm,那么可以得到什么等式?

活动3【活动】立方根

根据立方根的意义填空

(1)因为2³=8,所以8的立方根是();

(2)因为(0.4)³=0.064,所以0.064的立方根是();

(3)因为(0)³=0,所以0的立方根是();

(4)因为(-2)³=-8,所以-8的立方根是();

(5)因为(-2/3)³=-8/27,所以-8/27的立方根是()。

让学生讨论:你能发现正数、0和负数的立方根各有什么特点吗?

总结发现的规律。

继续做练习进行巩固。

判断下列说法是否正确:

(1)-8/27的立方根±2/3;

(2)25的平方根5;

(3)-64没有立方根;

(4)-4的立方根±2;

(5)0的平方根和立方根都是0。

讨论:你能归纳出平方根和立方根的异同点吗?

同时引入立方根的定义。

活动4【练习】立方根

通过练习探讨规律并进行总结,加强练习。

活动5【活动】立方根

归纳总结

问题1:什么是立方根?立方根有什么性质?

问题2:如何求一个数的立方根?

活动6【作业】立方根

立方根教学设计人教版全文共3页,当前为第3页。习题6.2第3、5题

《同步学习》P25、P26

活动7【活动】立方根

教学反思

6.2立方根

课时设计课堂实录

6.2立方根

1第一学时教学活动活动1【导入】立方根

你还记得什么是平方根吗?

平方根具有什么特征?

活动2【讲授】立方根

要制作一种容积为27m³的正方体形状的包装箱,这种包装箱的棱长应该是多少?

你还记得正方体的体积与棱长有什么关系吗?

如果设这种包装箱的棱长为xm,那么可以得到什么等式?

活动3【活动】立方根

根据立方根的意义填空

(1)因为2³=8,所以8的立方根是();

(2)因为(0.4)³=0.064,所以0.064的立方根是();

(3)因为(0)³=0,所以0的立方根是();

(4)因为(-2)³=-8,所以-8的立方根是();

(5)因为(-2/3)³=-8/27,所以-8/27的立方根是()。

立方根教学设计人教版全文共4页,当前为第4页。让学生讨论:你能发现正数、0和负数的立方根各有什么特点吗?

总结发现的规律。

继续做练习进行巩固。

判断下列说法是否正确:

(1)-8/27的立方根±2/3;

(2)25的平方根5;

(3)-64没有立方根;

(4)-4的立方根±2;

(5)0的平方根和立方根都是0。

讨论:你能归纳出平方根和立方根的异同点吗?

同时引入立方根的定义。

活动4【练习】立方根

通过练习探讨规律并进行总结,加强练习。

活动5【活动】立方根

归纳总结

问题1:什么是立方根?立方根有什么性质?

问题2:如何求一个数的立方根?

活动6【作业】立方根

习题6.2第3、5题

《同步学习》P25、P26

活动7【活动】立方根

教学反思

立方根教学设计人教版全文共5页,当前为第5页。叶纪武教研员教研员评论

优点:

教师教态自然,备课充分,能够把握本节课的重难点进行教学,讲解具体。

缺点:

讲得还是多了点,若能把多一点时间交还给学生,效果会更好。

立方根教学设计人教版第2篇

教学目标

1.知识与技能

①了解立方根的概念,初步学会用根号表示一个数的立方根;

②了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;③体会立方根与平方根的区别和联系;

④会用计算器求立方根,让学生亲身体会到利用计算器不仅能给运算带来很大方便,也给探求数量间的关系与变化带来方便。

2.过程与方法

①在探究立方根的概念和有关知识的过程中,体会类比数学思想,并且发展推理能力和有条理的语言表达能力;

②经历运用计算器探求数学规律的过程,发展合情合理的推理能力。

3.情感与态度

①通过学习立方根,认识数学与人类生活的密切联系;

②通过探究活动,锻炼克服困难的意志,建立自信心,提高学习立方根教学设计人教版全文共6页,当前为第6页。数学的热情。

重点与难点

教学重点:立方根的概念及求法。

教学难点:立方根与平方根的区别与联系。

教法与学法

(一)教法设想:

立方根的概念:采用类比法;

立方根的性质:采用层层递进、从特殊到一般。

过程分析

(一)活动一:创设情景,引入立方根

问题一:数学实际问题

同学们在家里或者商场里都见过电热水器,我们一般家里常用的是容积为50升的,如果要生产一种容积为50升的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面半径应取多少分米?

(教师展示图片并提出问题;学生以小组为单位合作完成本题)解:设圆柱体的底面半径为x分米,则直径为2x分米,圆柱体的高为4x分米,根据题意得

x24x50

x3≈3.981

(学生现有的知识只能做到这里)

这个实际问题中的数量关系的分析对于学生来说不成问题的,但在解决问题的过程中引入了新问题,这对学生来说是一个挑战,从而立方根教学设计人教版全文共7页,当前为第7页。激发了学生的学习兴趣。

问题二:同学们有没有遇到过类似的实际问题?

学生会举出正方体的例子,学生正方体遇到的较多,体积公式是棱长的立方;引导学生把举得例子补充成数学问题;

比如学生举例:正方体体积为27,求正方体的棱长;

继续引导学生分析本题得到:x3=27

教师发问:这与我们前面学习的哪个知识点类似?

联系前面学习的平方根的概念,并联系上面的问题,归纳出立方根的概念;并联系开平方的概念,给出开立方的概念。

学生梳理思路,阐述观点。

教师对学生的回答的立方根的概念做出总结。

(二)活动二:应用概念,探索性质

例1.求下列各数的立方根

(1)64(2)0.125(3)0

8(4)-8(5)27

教师规范学生的语言叙述,教师板书完整的解题过程,为学生示范规范的解题步骤。

探究1

问题一:通过例1同学们发现了什么?

思考正数、0、负数的`立方根各有什么特点?

归纳:正数的立方根是数;

负数的立方根是数;

立方根教学设计人教版全文共8页,当前为第8页。零的立方根是。

问题二:你能说出数的平方根与立方根有什么不同吗?

(三)活动三:提高能力,再探性质

1.给出立方根的表示方法:a;

其中3是根指数,a是被开方数;

读作:三次根号a提出注意事项:a的根指数3不能省略。

探究2:探究互为相反数的数的立方根的关系

8(2),(288;

27(3),27(3),2727;111111(),(.12551255125125

问题:通过填空你有什么发现?你能用一个关系式表示你的发现吗?通过以上两个环节的设计,突破了本节课的难点。

(四)活动四:应用新知,巩固新知

1.例2、求下列各式的值:

(1)(2)125(3)27

64(4)2197

学生独立思考,师生共同完成;2.利用计算器求一个数的立方根,并完成以下练习

(1)

(2)15625

(3)2744

(4)0.426254

8(5)25教师鼓励学生自己探索计算器的用法。

立方根教学设计人教版全文共9页,当前为第9页。对于一些暂时还没学会用计算器求一个数的立方根的学生,可以采用同学之间互帮互学的方式。

3.探究3:

用计算器计算….000216,.216,216,216000…你能发现什么规律?用计算器计算(精确到0.001),的近似值。并用你发现的规律求.1,0.0001

(五)活动5:归纳小结,布置作业

1.通过本节课的学习同学们有哪些收获?

2.布置作业

(1)必做题:P803456

(2)课后探索题:求23,(2)3,(3)3,43,303的值,对于任意数a,a等于多少?求,27,27,0的值,对于任意数a,a等于多少?333333333

立方根教学设计人教版第3篇

教学目标

知识与技能目标

1.了解立方根的概念,初步学会用根号表示一个数的立方根.

2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.

3.了解立方根的性质唯一性.

4.区分立方根与平方根的不同.

5.分清两个互为相反数的立方根的关系,即

5.渗透特殊一般的数学思想方法.

立方根教学设计人教版全文共10页,当前为第10页。过程与方法目标

1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.

2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.

3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.

情感与态度目标:

1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.

2.学生通过对实际问题的解决,体会数学的实用价值.

教学重点和难点

重点:立方根的概念及求法.

难点:立方根的求法,立方根与平方根的联系及区别.

教学过程

本节内容教学法为:类比法。

立方根教学设计3

一、教学目标:

1、通过实例经历立方根概念的产生过程。

2、了解立方根的概念,会用根号表示。

3、了解开立方与立方互为逆运算,会用立方运算求立方根。

二、教学的重点和难点:

立方根教学设计人教版全文共11页,当前为第11页。重点:;立方根的概念和开立方运算。

难点:例2第(2)题涉及两种开方运算的混合运算,基础较差的学生容易混淆,是本节课的难点。

三、教学过程:

㈠创设情境、引入新知

我以学生们比较熟悉的魔方引入。

提出问题:

①平常的生活中,同学们有玩过魔方吗?

②一个三阶魔方第一层有多少个立方体?

③它一共由多少个小立方体组成的?

④由8个小立方体组成的是几阶魔方你知道吗?64个小立方体?

引出立方根的定义。

㈡启发诱导、探究新知

1、立方根的定义:一般地,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根,

2、立方根的表示方法:3

a

根指数

根号

被开方数

3、读做:三次根号

㈢勤于实践、应用新知

立方根教学设计人教版全文共12页,当前为第12页。1、例1:求下列各数的立方根:

(1)125(2)-27(3)(4)-0.064(5)0

师给出(1)(2)两小题的解法步骤,(3)(4)(5)小题由学生板演之后:

观察并思考:一个数的立方根的个数有几个?

一个数的立方根的`符号与这个数的符号存在什么关系?

得出事实:一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根是零。

2、开立方的定义:求一个数的立方根的运算,叫做开立方

3、探究平方根与立方根的异同点

正数零负数

10-1

平方根

立方根

仔细看一看,大胆说一说:

不同点:①正数和负数的平方根与立方根的个数不同

②表示平方根和立方根的符号不同

相同点:①0的平方根、立方根都是0

②求平方根、立方根的过程都是一种逆运算。

4、明辨是非

1.判断下列说法是否正确,并说明理由:

(1)的立方根是

立方根教学设计人教版全文共13页,当前为第13页。(2)算术平方根和立方根都等于本身的数只有0

(3)-8的立方根是-2,但-8没有平方根

(4)4的平方根是±2,但4没有立方根

(5)互为相反数的两个数的立方根也互为相反数

注意:①举例时要注意特殊数:1,0,-1

②举例的数要有代表性

㈣提炼升华、巩固新知

1、帮忙纠错:

②由216个小立方体能组成几阶魔方呢?

③把一个长、宽、高分别为50cm,2cm,8cm的长方体铁块溶化后锻造成一个立方体铁块,问造成的立方体的棱长是多少cm?(损耗忽略不计)

㈤课堂小结、完善新知

我们可以提出哪些问题?

(1)它表示什么意思?

(2)计算的结果是多少?

……

㈥布置作业:

(1)课堂作业本3.3

(2)课本剩余作业题

(3)提高题

立方根教学设计人教版第4篇

立方根教学设计人教版全文共14页,当前为第14页。立方根

数学立方根教案

●教学目标

(一)教学知识点

1.了解立方根的概念,会用根号表示一个数的立方根.

2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.

3.了解立方根的性质.

4.区分立方根与平方根的不同.

(二)能力训练要求

1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.

2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.

(三)情感与价值观要求

当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.

●教学重点

立方根的概念.

●教学难点

立方根教学设计人教版全文共15页,当前为第15页。1.正确理解立方根的概念.

2.会求一个数的立方根.

3.区分立方根与平方根的不同之处.

●教学方法

类比学习法.

●教具准备

投影片两张:

第一张:平方根与立方根的联系与区别(记作2.3A);

第二张:补充练习(记作2.3B).

●教学过程

Ⅰ.新课导入

上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=.

若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?

Ⅱ.新课讲解

1.[师]请大家先回忆平方根的定义.

[生]若一个数x的平方等于a,即x2=a,则x叫a的平方根.

[师]在平方根定义的基础上,若x3=a,则x叫a的什么呢?请大家自己猜想然后讨论得出结果.

[生]因为x2=a,x叫a的平方根,所以当x的立方等于a时,x立方根教学设计人教版全文共16页,当前为第16页。叫a的立方根.

[师]当x4=a时,x叫a的什么根呢?

[生]当x的4次方等于a时,x叫a的4次方根.

[师]大家应为这位同学的精彩回答而鼓掌.下面大家能不能再根据平方根的写法来类推立方根的记法呢?

[生]能.若x的平方等于a,则x叫a的平方根,记作x=,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=,读作x等于正、负三次根号a,简称x等于正、负根号a.

[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.

[生甲]我认为这位同学回答得不对.如果x2=a,则x=,x3=a时,x=也成立的话,那如何区分平方根与立方根呢?

[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是2,所以立方根的个数不正确.

[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cuberoot;也叫三次方根)如2是8的立方根,记为x=,读作x等于三次根号a.

开立方的定义

[师]大家先回忆开平方的定义,再类推开立方的定义.

[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根教学设计人教版全文共17页,当前为第17页。立方根的运算,叫做开立方,其中a叫做被开方数.

(2)立方根的性质

[师]2的立方等于多少?是否有其他的数,它的立方也是8?

[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.

[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?

[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.

[师]0的立方等于多少?0有几个立方根?

[生]0的立方等于0,0有1个立方根是0.

[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?

[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.

[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.

(3)平方根与立方根的区别与联系.

[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.

[生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.

立方根教学设计人教版全文共18页,当前为第18页。[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.

[生]它们的表示方法和读法不同,一个正数a的平方根表示为,立方根表示为.

[师]很好.大家现在已经具备了一定的`分析判断能力,这对大家以后的学习和工作非常有帮助,继续发扬下去,你们都将前途无量,下面我再系统地总结一下.

投影片:(2.3A)

平方根与立方根的联系与区别.

联系:

(1)0的平方根、立方根都有一个是0.

(2)平方根、立方根都是开方的结果.

区别:

(1)定义不同:如果一个数的平方等于a,这个数就叫做a的平方根如果一个数的立方等于a,这个数就叫做a的立方根.

(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根.

(3)表示法不同

正数a的平方根表示为,a的立方根表示为.

(4)被开方数的取值范围不同

中的被开方数a是非负数;中的被开方数可以是任何数.

立方根教学设计人教版全文共19页,当前为第19页。2.例题讲解

[例1]求下列各数的立方根:

(1)-27;(2);(3)0.216;(4)-5.

解:(1)因为(-3)3=-27,所以-27的立方根是-3,即=-3;

(2)因为()3=,所以的立方根是,即=;

(3)因为0.63=0.216,所以0.216的立方根是0.6,即=0.6;

(4)-5的立方根是.

[师]请大家思考下列问题.

表示a的立方根,则()3等于什么?等于什么?

大家可以先举例后找规律.

[生]∵23=8,=2,()3=8;

∵(-2)3=-8,

=-2;()3=-8;

∵()3=,

∵(-)3=-,

()3=a.

[师]若x3=a,则x=,x3=()3=a.

()3=a.

又∵a3是a的立方,所以a3的立方根就是a,所以=a.下面就这两个式子进行练习.

[例2]求下列各式的值:

(1);(2);(3)-;(4)()3

立方根教学设计人教版全文共20页,当前为第20页。解:(1)==-2;

(2)=;

(3)=;

(4)()3=9.

Ⅲ.课堂练习

(一)随堂练习

1.求下列各式的值:

解:;

2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?

解:设正方体的棱长是x厘米,得

x3=833

x3=216

x=6(厘米)

答:这个正方体的棱长是6厘米.

(二)补充练习

投影片:(2.3B)

1.求下列各数的立方根:

0,1,-,6,-,0.001

2.求下列各式的值:

3.下列说法对不对?

-4没有立方根;

立方根教学设计人教版全文共21页,当前为第21页。1的立方根是

的立方根是;

-5的立方根是-;

64的算术平方根是8.

1.解:因为03=0,所以0的立方根为0.

即=0;

因为13=1,所以1的立方根为1.

即=1;

因为的立方根为.

即;

6的立方根为;

∵-的立方根为-,即;

∵0.13=0.001,所以0.001的立方根为0.1,即=0.1.

2.解:;

3.答案:错.因为负数也有立方根;

错.因为1的立方根是1;

错.的立方根是,平方根是

对.-5的立方根是,-;

对.

Ⅳ.议一议

1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半立方根教学设计人教版全文共22页,当前为第22页。径的多少倍?

解:设原来的球形储气罐的半径为r1,后来的储气罐的半径为r2,由球体积公式V=r3得

8r13=r23

8r13=r23

(2r1)3=r23

r2=2r1

即新储气罐的半径是旧储气罐半径的2倍.

2.一个正方体的体积变为原来的n倍,它的棱长变为原来的多少倍?

解:设原正方体的棱长为a,后来的正方体的棱长为b,得

na3=b3

b=.

即后来的棱长变为原来的倍.

Ⅴ.课时小结

本节课学了如下内容:

1.立方根的定义.

2.立方根的性质.

3.开立方的定义.

4.平方根与立方根的区别与联系.

5.会求一个数的立方根.

Ⅵ.课后作业

立方根教学设计人教版全文共23页,当前为第23页。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论