版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市云霄县达标名校2024届十校联考最后数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2π B.16+4π C.16+8π D.16+12π2.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着 B.沉 C.应 D.冷3.下列运算正确的是()A.=x5 B. C.·= D.3+24.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B.明天下雪的概率为,表示明天有半天都在下雪C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.了解一批充电宝的使用寿命,适合用普查的方式5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A. B. C. D.6.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.57.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=1;④当y=﹣2时,x的值只能取1;⑤当﹣1<x<5时,y<1.其中,正确的有()A.2个 B.3个 C.4个 D.5个8.下列计算正确的是()A.x+x=x2B.x·x=2xC.(9.在平面直角坐标系中,点P(m,2m-2),则点P不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______度.12.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.13.某种商品两次降价后,每件售价从原来100元降到81元,平均每次降价的百分率是__________.14.若代数式在实数范围内有意义,则实数x的取值范围为_____.15.一个n边形的内角和为1080°,则n=________.16.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC.求证:△BDA∽△CED.18.(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.19.(8分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.20.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.(1)图①中,点C在⊙O上;(2)图②中,点C在⊙O内;21.(8分)解方程:x2-4x-5=022.(10分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.23.(12分)当=,b=2时,求代数式的值.24.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.2、A【解析】
正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键3、B【解析】
根据幂的运算法则及整式的加减运算即可判断.【详解】A.=x6,故错误;B.,正确;C.·=,故错误;D.3+2不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.4、C【解析】
根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B.“明天下雪的概率为”,表示明天有可能下雪,错误;C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D.了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差,全面调查与抽样调查,随机事件,概率的意义,比较基础,难度不大.5、A【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6、B【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.7、A【解析】
根据二次函数的性质和图象可以判断题目中各个小题是否成立.【详解】由函数图象可得,
a>1,b<1,即a、b异号,故①错误,
x=-1和x=5时,函数值相等,故②错误,
∵-=2,得4a+b=1,故③正确,
由图象可得,当y=-2时,x=1或x=4,故④错误,
由图象可得,当-1<x<5时,y<1,故⑤正确,
故选A.【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.9、B【解析】
根据坐标平面内点的坐标特征逐项分析即可.【详解】A.若点P(m,2m-2)在第一象限,则有:m>02m-2>0解之得m>1,∴点P可能在第一象限;B.若点P(m,2m-2)在第二象限,则有:m<02m-2>0解之得不等式组无解,∴点P不可能在第二象限;C.若点P(m,2m-2)在第三象限,则有:m<02m-2<0解之得m<1,∴点P可能在第三象限;D.若点P(m,2m-2)在第四象限,则有:m>02m-2<0解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.10、A【解析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:
3(x-2)=2x+1.
故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、108°【解析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.12、2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,ymin=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,13、10%【解析】
设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.14、x≤1【解析】
根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.15、1【解析】
直接根据内角和公式计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.16、m>-1【解析】
首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:,①+②得1x+1y=1m+4,则x+y=m+1,根据题意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.三、解答题(共8题,共72分)17、证明见解析.【解析】
不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.【详解】∵AB是⊙O直径,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.18、(1)A(4,3);(2)28.【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.【详解】解:(1)由题意得:,解得,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.19、(1)D(2,2);(2);(3)【解析】
(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,,∴A点的坐标为(0,2)∵∴顶点B的坐标为:(1,2-a),对称轴为x=1,∵点A与点D关于对称轴对称∴D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=∴M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直线AB的解析式为y=-ax+2联立成方程组:,解得:∴N点的坐标为:()ON=()过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M,C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵抛物线开口向下,故a<0,∴a=舍去,【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.20、图形见解析【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E,利用(1)的方法画图即可.试题解析:如图①∠DBC就是所求的角;如图②∠FBE就是所求的角21、x1="-1,"x2=5【解析】根据十字相乘法因式分解解方程即可.22、【小题1】设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求抛物线的解析式为:……………3分【小题2】如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得∴点E坐标为(-2,3)………………4分又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)∴抛物线的对称轴直线PQ为:直线x=-1,[中国教#&~@育出%版网]∴点D与点E关于PQ对称,GD=GE……………②分别将点A(1,0)、点E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:过A、E两点的一次函数解析式为:y=-x+1∴当x=0时,y=1∴点F坐标为(0,1)……5分∴|DF|=2………③又∵点F与点I关于x轴对称,∴点I坐标为(0,-1)∴|EI|=(-2-0)又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可……6分由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:y=k分别将点E(-2,3)、点I(0,-1)代入y=k-2k1过I、E两点的一次函数解析式为:y=-2x-1∴当x=-1时,y=1;当y=0时,x=-12∴点G坐标为(-1,1),点H坐标为(-12∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四边形DFHG的周长最小为2+25【小题3】如图⑤,由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:k2解得:k2过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且OAOM要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论;……………9分①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………10分②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分综上所述,存在以P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 涵洞课程设计英文介绍
- 特殊儿童教育课程设计
- 机械设计课程设计自评
- 家长委员会工作制度、工作职责
- 2024年中国单级单吸离心式立式渣浆泵市场调查研究报告
- 土地复垦工程施工的重点和难点及保证措施
- 2025至2030年中国微型电动葫芦行业投资前景及策略咨询研究报告
- 2025至2030年中国ABS胶水行业投资前景及策略咨询研究报告
- 2025至2030年中国三辊热轧机行业投资前景及策略咨询研究报告
- 校际联盟第一年工作方案计划
- 语文-九师联盟2025年高三12月质量检测试题和答案
- 2024版人才引进住房租赁补贴协议3篇
- 项目保证金协议书模板
- 小学一年级上册数学期末测试卷及解析答案
- 2024-2025学年安徽省阜阳市阜阳三中高一(上)期中数学试卷(含答案)
- 2024-2025学年度第一学期四年级数学寒假作业
- 读后续写+旧忆新愁:办公室冷遇触发校园往事追思+讲义-2025届浙江省嘉兴市高三上学期一模英语试题
- 川藏铁路勘察报告范文
- 喷漆安全管理制度模版(3篇)
- Java Web程序设计教程(第二版)(微课版)01 Web应用开发概述
- 肺结核课件教学课件
评论
0/150
提交评论