版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市博文职业高级中学高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数(
)A.
B.C.D.参考答案:D略2.(+)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.360参考答案:A【考点】DB:二项式系数的性质.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:由于(+)n展开式中只有第六项的二项式系数最大,故n=10,故(+)10展开式的通项公式为Tr+1=?2r?,令5﹣=0,求得r=2,∴展开式中的常数项是?22=180,故选:A.3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为
(
)
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误参考答案:A略4.若数列{an},{bn}的通项公式分别是,,且an<bn对任意n∈N*恒成立,则实数a的取值范围是()A.[﹣1,) B.[﹣2,) C.[﹣2,) D.[﹣1,)参考答案:C【考点】数列递推式.
【专题】等差数列与等比数列.【分析】an<bn对任意n∈N*恒成立,分类讨论:当n为偶数时,可得a<2﹣,解得a范围.当n为奇数时,可得﹣a<2+,解得a范围,求其交集即可.【解答】解:∵an<bn对任意n∈N*恒成立,∴当n为偶数时,可得a<2﹣,解得.当n为奇数时,可得﹣a<2+,解得.∴a≥﹣2.∴.故选:C.【点评】本题考查了数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.5.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A. B. C. D.参考答案:D【考点】抛物线的简单性质.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.6.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件 A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则(
)A. B. C. D.参考答案:A分析:由条件概率公式计算即可.详解:,,,则.故选:A.点睛:本题考查条件概率.7.用数学归纳法证明“”()时,从“”时,左边应增添的式子是 (
) A. B. C. D.参考答案:B略8.阅读如图所示的程序框图,运行相应的程序,输出的结果是()
A.3
B.11
C.38
D.123参考答案:B9.x,y∈R,若|x|+|y|+|x﹣1|+|y﹣1|≤2,则x+y的取值范围为()A.[﹣2,0] B.[0,2] C.[﹣2,2] D.(0,2)参考答案:B【考点】绝对值三角不等式.【分析】根据绝对值的意义,|x|+|y|+|x﹣1|+|y﹣1|的最小值为2,再根据条件可得只有|x|+|y|+|x﹣1|+|y﹣1|=2,此时,0≤x≤1,0≤y≤1,从而求得x+y的范围.【解答】解:解:根据绝对值的意义可得|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,其最小值为1;|y|+|y﹣1|表示数轴上的y对应点到0、1对应点的距离之和,其最小值为1;故|x|+|y|+|x﹣1|+|y﹣1|的最小值为2.再根据|x|+|y|+|x﹣1|+|y﹣1|≤2,可得只有|x|+|y|+|x﹣1|+|y﹣1|=2,此时,0≤x≤1,0≤y≤1,∴0≤x+y≤2,故选:B.10.点P(x,y)是曲线是参数)上任意一点,则的最大值为(
)
A.1
B.2
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.如图,为半圆的直径,为以为直径的半圆的圆心,⊙O的弦切⊙A于点,则⊙A的半径为__________
参考答案:12..已知随机变量,若,则__________参考答案:0.813.已知数列{an}是公差不为零的等差数列,Sn为其前n项和,且a2=3,又a4、a5、a8成等比数列,则an=
,使Sn最大的序号n的值
.参考答案:﹣2n+7;3
【考点】等差数列与等比数列的综合.【分析】设公差为d(d≠0),由条件、等差数列的通项公式、等比中项的性质列出方程组,求出首项和公差,再求出an;由等差数列的前n项和公式求出Sn,利用配方法化简后,由一元二次函数的性质求出取Sn最大值时对应的n.【解答】解:设等差数列{an}的公差为d,d≠0,∵a2=3,a4,a5,a8成等比数列,∴,又d≠0,解得a1=5,d=﹣2,∴an=5﹣2(n﹣1)=﹣2n+7;∴Sn==﹣n2+6n=﹣(n﹣3)2+9,∴当n=3时,Sn取到最大值为9,故答案为:=﹣2n+7;3.14.椭圆若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为,则椭圆的方程为
.参考答案:【考点】椭圆的标准方程.【专题】计算题;分类讨论;综合法;圆锥曲线的定义、性质与方程.【分析】由题意推出椭圆的关系,b=c,利用焦点到同侧长轴端点距离为,求出a,b,即可求出椭圆的方程.【解答】解:因为椭圆的对称轴在坐标轴,两焦点与两短轴的端点恰好是正方形的四个顶点,所以b=c,a=b,又焦点到同侧长轴端点距离为,即a﹣c=,即a﹣b=,解得a=,b=c=1,所以当焦点在x轴时,椭圆的方程为:=1;当焦点在y轴时,椭圆的方程为=1.故答案为:.【点评】本题考查椭圆的方程的求法,椭圆的基本性质,考查计算能力,属于中档题.15.有编号为1,2,3,4,5的五封信,另有同样标号的五个信封,一封信随机装进一个信封,一个信封只装一封信,则至少有两封信标号相同的概率为(
)
A.
B.
C.
D.参考答案:C略16.在中,.如果一个椭圆通过、两点,它的一个焦点为点,另一个焦点在边上,则这个椭圆的焦距为
.
参考答案:17.在平面中,△ABC的角C的内角平分线CE分△ABC面积所成的比.将这个结论类比到空间:在三棱锥A-BCD中,平面DEC平分二面角A-CD-B且与AB交于E,则类比的结论为__________.参考答案:在平面中的角的内角平分线分面积所成的比,将这个结论类比到空间:在三棱锥中,平面平分二面角且与交于,则类比的结论为根据面积类比体积,长度类比面积可得:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知递增的等比数列的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列。(1)求数列的通项公式;(2)若,求。参考答案:19.选修4-5:不等式选讲已知函数.(Ⅰ)作出函数的图象;(Ⅱ)不等式的解集为,若实数a,b满足,求的最小值.参考答案:(Ⅰ)设.其图象如图所示:(Ⅱ)解.当时,,得;当时,,得;当时,,得.综上,.可知.(当且仅当,即,等号成立).所以的最小值为.20.(本小题共12分)
参考答案:,
5分
(2)
8分
12分略21.(本题12分)(Ⅰ)求曲线在点处的切线方程为;(Ⅱ)一个盒子里装有标号为1、2、3、4、5的5张标签,随机地选取两张标签,根据下列条件求两标签上的数字为相邻整数的概率:(1)标签的选取是无放回的;(2)标签的选取是有放回的.参考答案:解:(Ⅰ)曲线在点处的切线方程为;(Ⅱ)(1);(2).略22.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球温湿度气候试验箱行业调研及趋势分析报告
- 2025年全球及中国光学有机硅胶行业头部企业市场占有率及排名调研报告
- 2025-2030全球电子母猪喂料器行业调研及趋势分析报告
- 2025年全球及中国熟食冷藏展示柜行业头部企业市场占有率及排名调研报告
- 房屋地基买卖合同
- 2025合同模板出国劳务合同范本
- 2025房屋借款合同范本
- 2025北京市前期物业服务合同模板
- 剪辑师聘用合同资讯
- 提升残疾人的信息获取与沟通能力
- 小学生雪豹课件
- 基础护理常规制度
- 针灸治疗动眼神经麻痹
- 倾听幼儿马赛克方法培训
- 设备日常维护及保养培训
- 2024年安全生产月主题2024年学校安全生产月活动方案
- 2024年广东佛山市中医院三水医院招聘61人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 中级半导体分立器件和集成电路装调工技能鉴定考试题库(含答案)
- 固定资产培训课件共-51张
- 2024年高考语文思辨类作文预测+考前模拟题+高分范文
- 2024年演出经纪人考试必背1000题一套
评论
0/150
提交评论