辽宁省朝阳市建平县市级名校2024年中考联考数学试题含解析_第1页
辽宁省朝阳市建平县市级名校2024年中考联考数学试题含解析_第2页
辽宁省朝阳市建平县市级名校2024年中考联考数学试题含解析_第3页
辽宁省朝阳市建平县市级名校2024年中考联考数学试题含解析_第4页
辽宁省朝阳市建平县市级名校2024年中考联考数学试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省朝阳市建平县市级名校2024年中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体是由4个大小相同的小立方体搭成,其俯视图是()A. B. C. D.2.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是()A.4 B.3 C.2 D.13.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110° B.115° C.120° D.130°4.如果y=++3,那么yx的算术平方根是()A.2 B.3 C.9 D.±35.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.16.若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.7.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC8.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列运算正确的是()A.a3•a2=a6 B.(a2)3=a5 C.=3 D.2+=210.下列计算正确的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a311.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或612.下列运算结果是无理数的是()A.3× B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若反比例函数的图象位于第二、四象限,则的取值范围是__.14.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.15.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.16.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.17.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD的相似比为_____.18.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB是⊙O的弦,C是的中点,AB=8,AC=,求⊙O半径的长.20.(6分)计算21.(6分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.(1)a0,0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.22.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.23.(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处.(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点C、E、F、G为顶点的四边形是矩形,求点F的坐标.24.(10分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25.(10分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.26.(12分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:△ADC≌△FDB;(2)求证:(3)判断△ECG的形状,并证明你的结论.27.(12分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2、C【解析】

用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【详解】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=2,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正确,∵GB=,AC=2,∴AF==,故③正确,GF=,FE=BG﹣GF﹣BE=,故②错误,S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.故选B.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.3、A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.4、B【解析】解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则yx=9,9的算术平方根是1.故选B.5、A【解析】

因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.6、A【解析】

分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】解①得x<20

解②得x>3-2a,

∵不等式组只有5个整数解,

∴不等式组的解集为3-2a<x<20,

∴14≤3-2a<15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.7、C【解析】根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.8、D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限.详解:∵点A在第三象限,∴a<0,-b<0,即a<0,b>0,∴点B在第四象限,故选D.点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.9、C【解析】

结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.【详解】解:A.a3a2=a5,原式计算错误,故本选项错误;B.(a2)3=a6,原式计算错误,故本选项错误;C.=3,原式计算正确,故本选项正确;D.2和不是同类项,不能合并,故本选项错误.故选C.【点睛】本题考查了幂的乘方与积的乘方,实数的运算,同底数幂的乘法,解题的关键是幂的运算法则.10、D【解析】

根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.【详解】,A选项错误;(﹣a2)3=-a6,B错误;,C错误;.6a2×2a=12a3,D正确;故选:D.【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.11、C【解析】

由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.12、B【解析】

根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B选项:原式=,故B是无理数;C选项:原式==6,故C不是无理数;D选项:原式==12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、k>1【解析】

根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.【详解】∵反比例函数y=的图象在第二、四象限,∴1-k<0,∴k>1.故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.14、【解析】

让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.

故答案为:.【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.15、﹣2【解析】

连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.【详解】连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的O上,∵O的半径为2,∴当点O、E.C共线时,CE最小,如图2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC−OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为:2﹣2.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.16、6.4【解析】

根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.17、3:1.【解析】∵△AOB与△COD关于点O成位似图形,

∴△AOB∽△COD,

则△AOB与△COD的相似比为OB:OD=3:1,

故答案为3:1(或).18、②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、5【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设⊙O的半径为r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半径为5.20、【解析】

先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】原式=,=,=,=.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;(2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.【详解】(1)a>0,>0;(2)∵直线x=2是对称轴,A(﹣2,0),∴B(6,0),∵点C(0,﹣4),将A,B,C的坐标分别代入,解得:,,,∴抛物线的函数表达式为;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,∵抛物线关于直线x=2对称,∴由抛物线的对称性可知,E点的横坐标为4,又∵OC=4,∴E的纵坐标为﹣4,∴存在点E(4,﹣4);(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴点E′的纵坐标是4,∴,解得:,,∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).22、(1)y=﹣,y=﹣x+2;(2)6;(3)当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.【解析】

(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【详解】(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.23、(1)抛物线的解析式为;(2)12;(1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.(1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,∴抛物线的解析式为y=x2﹣4x+1.(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.(1)联结CE.∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即.(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即a2=(a﹣2)2+5,解得:,∴点.同理,得点;(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得:,得点、.综上所述:满足条件的点有),.点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.24、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】

(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;

②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;

(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【详解】(1)①如图1,,反比例函数为,当时,,,当时,,,,设直线的解析式为,,,直线的解析式为;②四边形是菱形,理由如下:如图2,由①知,,轴,,点是线段的中点,,当时,由得,,由得,,,,,,四边形为平行四边形,,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时,,,,,,,,,,.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.25、(1);(2);(3)【解析】

(1)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD的值.(2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等边三角形∴∠BOC=60°∵点D是BC的中点∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=∵OB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论